Abstract:
An elevator car travels in a lane (113, 115, 117) of an elevator shaft (111). A linear propulsion system imparts force to the car (214). The system includes a first part (116) mounted in the lane of the shaft and a second part (118) mounted to the elevator car configured to co-act with the first part to impart movement to the car. Car state sensors (360a-c) are disposed in the lane and determine a state space vector of the car within the lane. A sensed element (364) on the car is sensed by the plurality of car state sensors when the car is in proximity to the respective car state sensor. A control system (225) applies an electrical current to at least one of the first part and the second part and the plurality of car state sensors communicate with the control system and the linear propulsion system to provide state space vector data.
Abstract:
A drive and motor system and method for a six phase machine with negligible common-mode voltage is provided. The six-phase machine includes six phase windings divided into at least two windings groups configured to generate a zero common-mode pulse width modulation. The drive and motor system and method can also include at least one direct current source and a six phase inverter switching between positive and negative power of the at least one direct current source.
Abstract:
A drive unit for a motor includes a printed circuit board (PCB); a first gallium nitride switch having a gate, the first gallium nitride switch mounted to the PCB; a second gallium nitride switch having a gate, the second gallium nitride switch mounted to the PCB; a gate driver generating a turn-off drive signal to turn off the first gallium nitride switch and turn off the second gallium nitride switch; a first turn-off trace on the PCB, the first turn-off trace directing the turn-off drive signal to the gate of the first gallium nitride switch; and a second turn-off trace on the PCB, the second turn-off trace directing the turn-off drive signal to the gate of the second gallium nitride switch; wherein an impedance of the first turn-off trace is substantially equal to an impedance of the second turn-off trace.
Abstract:
A ropeless elevator system 10 includes a lane 13, 15, 17. One or more cars 20 are arranged in the lane. At least one linear motor 38, 40 is arranged along one of the lane and the one or more cars, and a magnet 50, 60 is arranged along the other of the lane and the one or more cars. The at least one magnet is responsive to the at least one linear motor. A linear motor controller 70 is operatively connected to the at least one linear motor, and a lane controller 80 is operatively connected to the linear motor controller. A back electro-motive force (EMF) module 84 is operatively connected to at least one of the linear motor controller and the lane controller. The lane controller being configured and disposed to control stopping one of the one or more cars based on a back EMF signal from the at least one linear motor determined by the EMF module.
Abstract:
An elevator power distribution system includes an elevator car (114; 214; 314; 414; 514) configured to travel in a lane (113, 115, 117; 213; 313, 315, 317; 413, 415, 417; 513, 515, 517) of an elevator shaft (111) and a linear propulsion system configured to impart force to the elevator car. The linear propulsion system includes a first portion (216), mounted in the lane and a second portion (218) mounted to the elevator car configured to coact with the first portion (216) to impart movement to the elevator car. A plurality of electrical buses (371, 372, 373, 374; 471, 472, 473, 474; 571, 572, 573, 574) are disposed within the lane and configured to provide power to the first portion, a rectifier (361a, 362a, 363a, 364a, 361b, 362b, 363b, 364b, 361c, 362c, 363c, 364c; 461a, 462a, 463a, 464a, 461b, 462b, 463b, 464b, 461c, 462c, 463c, 464c; 561a, 562a, 563a, 564a, 561b, 562b, 563b, 564b, 561c, 562c, 563c, 564c) is electrically connected to each of the plurality of buses and configured to convert power provided between the respective bus and a grid (302; 402; 502), and a battery backup (381a, 382a, 383a, 384a, 381b, 382b, 383b, 384b, 381c, 382c, 383c, 384c; 481a, 482a, 483a, 484a, 481b, 482b, 483b, 484b, 481c, 482c, 483c, 484c; 585a, 585b, 585c) is electrically connected with the rectifier and configured to transfer power to or receive power from the rectifier.
Abstract:
A control system (48) having a motor (28) is disclosed. The control system (48) may include a converter (32) operatively connected to a power source (36), an inverter (34) operatively connected to the motor (28), and a controller (50) operatively connected to the converter (32) or inverter (34). The controller (50) may be configured to receive control command signals, receive state feedback signals, and generate duty cycle signals for upper and lower arms of each phase (40) of the motor (28) based at least in part on the control command signals and state feedback signals. The duty cycle signals may minimize neutral point current in the converter (32) or inverter (34).
Abstract:
An elevator system includes a first elevator car (28) constructed and arranged to move in a first lane (30, 32, 34) and a first propulsion system (40) constructed and arranged to propel the first elevator. An electronic processor of the elevator system is configured to selectively control power delivered to the first propulsion system (40). The electronic processor includes a software-based power estimator configured to receive a first weight signal and a run trajectory signal for calculating a power estimate and comparing the power estimate to a maximum power allowance. The electronic processor is configured to output an automated command signal if the power estimate exceeds the maximum power allowance.
Abstract:
An elevator system with an elevator car 14, a linear propulsion system to impart force to the elevator car in a hoistway 11, a hoistway communication network 106, 206, a local communication network 110, 210, 310 and motion controls. One of the motion controls proximate to the elevator car is designated as a primary control 61 operable to command at least one drive 42A-42F via the local communication network. The at least one drive is coupled to one or more motor segments 22 of the linear propulsion system. The elevator system further includes a controller 46 operable to command the primary control via the hoistway communication network to reposition the elevator car within the hoistway. The designation of the primary control transitions between the motion controls as the elevator car moves in the hoistway.
Abstract:
A three-level converter includes a first converter leg having first switches connected across a positive DC node and a negative DC node, a second converter leg having second switches connected across the positive DC node and the negative DC node, and a third converter leg having third switches connected across the positive DC node the negative DC node. The converter includes a battery connected between the positive DC node and the negative DC node, and center-connected to a ground node having a ground potential. Each of the first, second, and third converter legs is connected to the ground node.
Abstract:
A regenerative drive device and a method for configuring the DC link of a regenerative drive device are disclosed. The multilevel regenerative drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The multilevel regenerative drive device may also include a direct current (DC) link bridging the inverter and the converter, the DC link including a capacitor, an inverter neutral point, and a converter neutral point independent of the inverter neutral point. Alternatively, the inverter neutral point and the converter neutral point may be connected.