Abstract:
A frame-type ozone generator (242) has a plurality of elongated electrodes (201, 202) deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator (241) for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core (211) covered with polyvinyl-difluoride (212). Preferably, each electrode array is arranged within a frame (206) of a given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.
Abstract:
The invention relates to a versatile system for producing ozone from an oxygen-containing gas. The system comprises at least one frame the area of which is covered by at least two electrodes distributed in parallel, coated with a dielectric material. Between the electrodes there are gaps for gas flow, at an angle of substantially 90 degrees to the longitudinal axis of the electrodes and the frontal plane of the frame. The surface areas of the electrodes are substantially parallel with the surface area of the electrically-conducting material from which the electrodes are made. The electrodes of the same polarity are connected together, while the electrodes of opposing polarities are adjacent to each other. The electrodes are placed in a position substantially perpendicular to the gas stream entering the system.
Abstract:
A frame-type ozone generator (242) has a plurality of elongated electrodes (201, 202) deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator (241) for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core (211) covered with polyvinyl-difluoride (212). Preferably, each electrode array is arranged within a frame (206) of a given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.
Abstract:
A frame-type ozone generator (242) has a plurality of elongated electrodes (201, 202) deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator (241) for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core (211) covered with polyvinyl-difluoride (212). Preferably, each electrode array is arranged within a frame (206) of a given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.
Abstract:
A frame-type ozone generator (242) has a plurality of elongated electrodes (201, 202) deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator (241) for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core (211) covered with polyvinyl-difluoride (212). Preferably, each electrode array is arranged within a frame (206) of a given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.
Abstract:
A frame-type ozone generator (242) has a plurality of elongated electrodes (201, 202) deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator (241) for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core (211) covered with polyvinyl-difluoride (212). Preferably, each electrode array is arranged within a frame (206) of a given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.
Abstract:
A frame-type ozone generator (242) has a plurality of elongated electrodes (201, 202) deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator (241) for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core (211) covered with polyvinyl-difluoride (212). Preferably, each electrode array is arranged within a frame (206) of a given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.
Abstract:
A frame-type ozone generator has a plurality of elongated electrodes deployed in substantially parallel, spaced relation to each other so as to form a substantially flat electrode array, and a flow generator for generating a flow of oxygen containing gas through the electrode array in a direction substantially perpendicular to the electrode array. Each of the electrodes is formed from an electrically conductive core covered with polyvinyl-difluoride. Preferably, each electrode array is arranged within a frame of a given area, each frame being configured for assembly with other similar frames to form an extended ozone generator of area greater than the given area. Also disclosed are an apparatus for treating a product with ozone-containing gas in which pressure-waves are used to enhance effectiveness of the ozone treatment, and a two-chamber batch method for implementing treatment of a product with possibly harmful gases such as ozone.