Abstract:
Ceramic compositions having a dispersion of nano-particles therein and methods of fabricating ceramic compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and ceramic precursor molecules. A ceramic matrix is formed from the ceramic precursor molecules. The ceramic matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including ceramic precursor molecules. The medium is a liquid or gel at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
Abstract:
A composite is provided, comprising a matrix material and a plurality of semiconductor structures cross-linked with, polarity bound by, or tethered to the matrix material, each semiconductor structure comprising:a nanocrystalline core comprising a first semiconductor material;a nanocrystalline shell comprising a second, different, semiconductor material at least partially surrounding the nanocrystalline core; andan insulator layer encapsulating the nanocrystalline shell and core.Further, a method of fabricating a composite is provided.
Abstract:
Composites having semiconductor structures embedded in a matrix are described. In an example, a composite includes a matrix material. A plurality of semiconductor structures is embedded in the matrix material. Each semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. Each semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core. An insulator layer encapsulates each nanocrystalline shell and anisotropic nanocrystalline core pairing.