Abstract:
A communications cable (22) having a plurality of twisted pairs (26) of conductors and various embodiments of a metal foil tape (34) between the twisted pairs (26) and a cable jacket (33) is disclosed. The metal foil tapes (34) include a cut (37) that creates discontinuous regions (38) in a metal layer (35) of the metal foil tapes (34). When the metal foil tapes (34) are wrapped around the cable core (23), the discontinuous regions (38) overlap to form at least one overlapping region. The cuts (37) are formed such that overlapping region is small and limits current flow through the metal foil tapes (34), thereby minimizing alien crosstalk in the communications cable (22).
Abstract:
Embodiments of the present invention are generally related to communication connectors, and more specifically, to communication connectors such as jacks which are compatible with more than one style of a plug. In one embodiment, the electrical and mechanical design of a jack in accordance with the present invention may extend the usable bandwidth beyond the IEC 60603-7-71 requirement of 1000MHz to support potential future applications such as, but not limited to, 40GBASE-T. In addition, the jack may be backwards compatible with lower speed BASE-T applications (e.g., 10GBASE-T and/or below) when an RJ45 plug is mated to the jack.
Abstract:
Embodiments of the present invention generally relate to the field of electronic communication, and more particularly, to techniques used to compensate for / reduce / or otherwise manipulate crosstalk in communication connectors, and apparatuses and methods which employ such techniques. In an embodiment, the present invention is a communication connector that includes a plurality of signal pairs including at least a first pair and a second pair, a first compensation stage between the first pair and the second pair, and an orthogonal compensation network between the first pair and the second pair. The orthogonal compensation network can be time delayed from the first compensation stage.
Abstract:
The present invention provides a communication jack for connecting to one of a first plug and a second plug. The jack includes a housing, plug interface contacts, and coupling circuitry. The plug interface contacts are at least partially within said housing and include a plurality of contact pairs having at least a first contact pair and a second contact pair. The coupling circuitry is configured for engaging said first contact pair and said second contact pair when said first plug is inserted into said housing. The coupling circuitry is configured for disengaging from said first contact pair and said second contact pair when said second plug is inserted into said housing.
Abstract:
A communication cable is provided with a plurality of twisted pairs of conductors and a matrix tape having conductive segments separated by gaps. The dimensions of the conductive segments are selected to reduce the undesirable coupling of signals between adjacent cables. An insulating layer may be provided between the twisted pairs of conductors and the matrix tape. In some embodiments, the insulating layer is an embossed or perforated film. The use of an embossed or perforated film decreases the dielectric constant of the insulating layer.
Abstract:
A powered communications patch panel is adapted to power network devices connected to the communications patch panel. Power is supplied to the network devices by the powered communications patch panel over the communication cabling. The powered communications patch panel may be provided with a management port to allow remote management of the patch panel via a network connection. Multiple management ports may be provided, allowing patch panels to be connected to one another in a daisy-chain configuration.
Abstract:
A system for the verification of the absence of voltage includes a first impedance, an amplitude limiter electrically connected to the first impedance, a second impedance electrically connected to the first impedance and the amplitude limiter, a varactor circuit electrically connected to the second impedance, an isolation capacitor electrically connected to the second impedance and varactor circuit, an envelope circuit with a voltage detection circuit connected to the isolation circuit via a buffer, and an RF oscillator. The amplitude limiter configured to limit the voltage applied to the varactor circuit. The RF oscillator configured to interact with the varactor circuit in order to create a modulated circuit for the buffer and envelope circuit. The envelope circuit is configured to demodulate the signal for the voltage detection circuit.
Abstract:
The present invention generally relates to the field of uninterruptable power supplies (UPSs) and more specifically, to UPSs using supercapacitors (also may be referred to as ultracapacitors) and/or other capacitor and/or battery elements. In an embodiment, a UPS of the present invention can individually regulate the charging of its capacitive elements to avoid overcharging and/or achieve a more efficient charge state.
Abstract:
A communication plug having a plug body and a plurality of contact pairs at least partially within the plug body, the contact pairs including an inherent asymmetric coupling between individual contacts of one of the contact pairs and other individual contacts of another of the contact pairs. Second asymmetric coupling elements are connected between the individual contacts of one of the contact pairs and the other individual contacts of another of the contact pairs. The second asymmetric coupling elements, when combined with the inherent asymmetric coupling, provide a balanced symmetric coupling between the individual contacts of one of the contact pairs and the other individual contacts of another of the contact pairs.
Abstract:
A communication connector is described that includes a plug and a jack, into which the plug is inserted. The plug terminates a length of twisted pair cable. The jack includes a sled to support contacts for connecting to wires within the cable, a rigid circuit board that connects to the contacts, and a flex board that contacts the plug interface contacts. The jack also includes circuitry to compensate for crosstalk between wire pairs of the cable by adding capacitance values within the sled, rigid circuit board and/or flex board between traces carrying signals from the wire pairs so that crosstalk caused by the plug between wire pairs that have signals in phase cancels with crosstalk caused by the plug between signals out of phase, and so that the capacitance values added between each trace are about equal. The compensation is performed to reduce differential to common mode signal conversion.