Abstract:
Described herein are irreversible Btk inhibitor compounds, and methods for using such irreversible inhibitors in the treatment of diseases and disorders characterized by the presence or development of solid tumors.
Abstract:
Disclosed herein are methods for treating a cancer comprising: a. administering a Btk inhibitor to a subject sufficient to result in an increase or appearance in the blood of a subpopulation of lymphocytes defined by immunophenotyping; b. determining the expression profile of one or more biomarkers from one or more subpopulation of lymphocytes; and c. administering a second agent based on the determined expression profile.
Abstract:
Described herein are compounds and pharmaceutical compositions containing such compounds, which inhibit the activity of histone deacetylase 8 (HDAC8). Also described herein are methods of using such HDAC8 inhibitors, alone and in combination with other compounds, for treating diseases or conditions that would benefit from inhibition of HDAC8 activity.
Abstract:
Described herein are methods for treating a subject suffering from an inflammatory, autoimmune, or heteroimmune condition by administering to the subject a pharmaceutical composition containing a therapeutically effective amount of a compound that is a selective inhibitor of histone deacetylase 8. Also described herein are methods for decreasing secretion of pro-inflammatory cytokines by administering an HDAC8-selective inhibitor compound. Further described herein are methods for predicting responsiveness to treatments for inflammatory conditions. Methods for predicting efficacy of treatments for inflammatory conditions are also described.
Abstract:
Described herein are irreversible kinase inhibitor compounds, exemplified by compounds of the following structure: methods for synthesizing such irreversible inhibitors, and methods for using such irreversible inhibitors in the treatment of a disease such as cancer.
Abstract:
Described herein are mutations that confer resistance to treatment with a BTK inhibitor. Described herein are modified BTK polypeptides that exhibit decreased inhibition (i.e. are resistant) to a covalent and/or irreversible BTK inhibitor. Also described herein modifications of PLCy2 and CARD 11 polypeptides that confer resistance to treatment with a BTK inhibitor. Described herein are diagnostic methods for detecting the modified polypeptides and nucleic acids encoding the modified polypeptides and applications of the methods thereof. Described herein are compositions, combinations, and kits containing the modified polypeptides and methods of using the modified polypeptides. Also described herein are methods of using modified BTK polypeptides as screening agents for the identification and design of second-generation BTK inhibitors.
Abstract:
Disclosed herein are methods for treating a cancer comprising: a. administering a Btk inhibitor to a subject sufficient to result in an increase or appearance in the blood of a subpopulation of lymphocytes defined by immunophenotyping; b. determining the expression profile of one or more biomarkers from one or more subpopulation of lymphocytes; and c. administering a second agent based on the determined expression profile.
Abstract:
Described herein are compounds and pharmaceutical compositions containing such compounds, which inhibit the activity of histone deacetylase 8 (HDAC8). Also described herein are methods of using such HDAC8 inhibitors, alone and in combination with other compounds, for treating diseases or conditions that would benefit from inhibition of HDAC8 activity.
Abstract:
The present invention is directed to certain hydroxamate derivatives that are useful in the treatment of hepatitis C. These compounds are also inhibitors of histone deacetylase and are therefore useful in the treatment of diseases associated with histone deacetylase activity. Pharmaceutical compositions and processes for preparing these compounds are also disclosed.
Abstract:
Methods are provided for treating a hematologic cancer comprising administering an anticancer agent to a subject identified as having an increased mobilization of a subpopulation of lymphocytes from a malignancy following administration of an irreversible Btk inhibitor. Methods also are provided for identification of subjects for treatment and the analysis of cells mobilized from a hematologic malignancy following administration of an irreversible Btk inhibitor.