Abstract:
Cut filler compositions, cigarettes, methods for making cigarettes and methods for smoking cigarettes are provided, which involve the use of nanoparticle additives capable of acting as an oxidant for the conversion of carbon monoxide to carbon dioxide and/or as a catalyst for the conversion of carbon monoxide to carbon dioxide. Cut filler compositions are described which comprise tobacco and at least one nanoparticle additive. Cigarettes are provided, which comprise a tobacco rod, containing a cut filler having at least one nanoparticle additive. Methods for making a cigarette are provided, which involve (i) adding a nanoparticle additive to a cut filler; (ii) providing the cut filler comprising the additive to a cigarette making machine to form a tobacco rod; and (iii) placing a paper wrapper around the tobacco rod to form the cigarette. Further, methods of smoking the cigarette described above are described, which involve lighting the cigarette to form smoke and inhaling the smoke, wherein during the smoking of the cigarette, the additive acts as an oxidant for the conversion of carbon monoxide to carbon dioxide and/or as a catalyst for the conversion of carbon monoxide to carbon dioxide.
Abstract:
A tobacco smoking mixture including an ammonia-release compound adapted to be formed into a lit-end cigarette is provided. The ammonia-release compound is incorporated in or on tobacco cut filler in an amount effective to reduce the cytotoxicity, and/or selective smoke constituents of cigarette smoke. Exemplary ammonia-release compounds include ammonium acetate, ammonium hydroxide, hexammine cobalt (III) chloride, hexammine cobalt (III) acetate, and combinations thereof. The ammonia-release compounds can release ammonia at temperatures between about 60°C and about 400°C. Ammonia-release compounds can be combined with additives, such as glycerine, cobalt acetate, copper (II) acetate, zinc acetate, other metal salts or combinations thereof, to further reduce the cytotoxicity of cigarette smoke .
Abstract:
A tobacco smoking mixture including an ammonia-release compound adapted to be formed into a lit-end cigarette is provided. The ammonia-release compound is incorporated in or on tobacco cut filler in an amount effective to reduce the cytotoxicity, and/or selective smoke constituents of cigarette smoke. Exemplary ammonia-release compounds include ammonium acetate, ammonium hydroxide, hexammine cobalt (III) chloride, hexammine cobalt (III) acetate, and combinations thereof. The ammonia-release compounds can release ammonia at temperatures between about 60°C and about 400°C. Ammonia-release compounds can be combined with additives, such as glycerine, cobalt acetate, copper (II) acetate, zinc acetate, other metal salts or combinations thereof, to further reduce the cytotoxicity of cigarette smoke .
Abstract:
A surface-modified activated carbon is provided to reduce the amount of free fine carbon particles among the activated carbon. By surface-modifying the activated carbon with a layer, the activated carbon can have increased mechanical strength and the fine carbon particles among the activated carbon can be fastened to the layer. Therefore, the layer allows for the level of free fine carbon particles among the activated carbon to be reduced. Surface-modified activated carbon can be used in smoking articles so as to allow for adsorption by the activated carbon with reduced free fine carbon particles in the smoking article and the smoke produced.
Abstract:
Cut filler compositions, cigarettes, methods for making cigarettes and methods for smoking cigarettes are provided, which involve the use of a catalyst capable converting carbon monoxide to carbon dioxide and/or nitric oxide to nitrogen. Cut filler compositions comprise tobacco and at least one catalyst. Cigarettes are provided, which comprise a cut filler having at least one catalyst. The catalyst comprises nanoscale metal and/or metal oxide particles supported on a fibrous support. The catalyst can be prepared by combining a dispersion of nanoscale particles with a fibrous support, or by combining a metal precursor solution with a fibrous support and then heat treating the fibrous support.
Abstract:
A cigarette paper includes heat-degradable filler particles to increase the porosity of the cigarette paper during smoking of the cigarette. The porosity of the cigarette paper during smoking of the cigarette will typically be from about 30 % to about 60 %. The heat-degradable filler particles are capable of being dissipated at temperatures from about 25 DEG C to about 350 DEG C and/or at distances from about 0.1 mm to about 10 mm in advance of a charline formed in the cigarette paper during combustion of the cigarette. Methods of making the cigarette paper, a cigarette using the cigarette paper, and methods for making and smoking such a cigarette are also provided.
Abstract:
Cut filler compositions, cigarettes, methods for making cigarettes and methods for smoking cigarettes which involve the use of partially reduced nanoparticle additives capable of acting as an oxidant for the conversion of carbon monoxide to carbon dioxide and/or as a catalyst for the conversion of carbon monoxide to carbon dioxide are provided. The compositions, articles and methods of the invention can be used to reduce the amount of carbon monoxide and/or nitric oxide present in mainstream smoke. The partially reduced additive can be formed by partially reducing Fe 2 O 3 , to produce a mixture of various reduced forms such as Fe 3 O 4 , FeO and/or Fe, along with unreduced Fe 2 O 3 .
Abstract:
Se proporcionan composiciones de relleno de corte, cigarrillos, metodos para hacer cigarrillos y metodos para fumar cigarrillos, los cuales involucran el uso de un catalizador capaz de convertir monoxido de carbono a dioxido de carbono y/u oxido nitrico a nitrogeno. Las composiciones de relleno de corte comprenden tabaco y al menos un catalizador. Los cigarrillos son provistos, los cuales comprenden un relleno de corte que tiene al menos un catalizador. El catalizador comprende particulas de metal y/u oxido de metal de nanoescala soportadas en un soporte fibroso. El catalizador puede ser preparado al combinar una dispersion de particulas de nanoescala con un soporte fibroso, o al combinar una solucion de precursor de metal con un soporte fibroso y entonces tratar con calor el soporte fibroso.