Abstract:
A wireless sensor network for wirelessly monitoring a medical subject includes a plurality of sensor nodes (22, 24, 26, 122, 124, 126). Each sensor node includes a wireless transceiver (46) for sending and receiving wireless messages, a sensor (40, 42, 130, 132, 140, 142) monitoring a characteristic of the medical subject, and a processor (50). The processor is programmed to at least perform an authentication method including: (i) acquiring sensor data via the sensor for a predetermined time (76) responsive to receiving a wireless trigger message; (ii) storing an association code (60, 150, 152, 160, 162) computed from the acquired sensor data; and (iii) authenticating a subsequently received wireless message containing an association code tag by comparing the association code tag with the stored association code. The processor further attaches the stored association code as the association code tag in messages sent to other sensors.
Abstract:
A wireless sensor network for wirelessly monitoring a medical subject includes a plurality of sensor nodes (22, 24, 26, 122, 124, 126). Each sensor node includes a wireless transceiver (46) for sending and receiving wireless messages, a sensor (40, 42, 130, 132, 140, 142) monitoring a characteristic of the medical subject, and a processor (50). The processor is programmed to at least perform an authentication method including: (i) acquiring sensor data via the sensor for a predetermined time (76) responsive to receiving a wireless trigger message; (ii) storing an association code (60, 150, 152, 160, 162) computed from the acquired sensor data; and (iii) authenticating a subsequently received wireless message containing an association code tag by comparing the association code tag with the stored association code. The processor further attaches the stored association code as the association code tag in messages sent to other sensors.
Abstract:
The invention relates to a node (100) for a network such as a wireless control network or the like. In this network, each node (100) comprises a identifier (104) and keying material (102), means for authenticating (112) the node's identifier based on the node's keying material and means for checking (114) the access control rights of the node in a distributed manner based on the node's multidimensional identity and access rights corresponding to the node's identity. Additionally, the invention allows the node to generate a common key with any other node in the network that can be used to enable further secure communications.
Abstract:
Wireless medical apparatus (3) having a transceiver unit (23), an indicating device (27) and an input device (25) and having a function for automatic integration of the medical apparatus (3) into the nearest patient network (13). Allocation of the medical apparatus (3) can be effected by a method in which the apparatus is integrated into the nearest patient network after enabling of the apparatus.
Abstract:
A method, wireless system and a wireless device are described. The method, system and device provide multidimensional identification, authentication, authorization and key distribution providing secure communications at a deepest common security domain.
Abstract:
The invention relates to a network with a first node (102) comprising first pre-distributed keying material being assigned to the first node before the first node is connected to the network and a second node (104) comprising second pre- distributed keying material being assigned to the second node before the second node is connected to the network. The first node is configured to establish a secure communication (112) to the second node based on the first and second pre-distributed keying materials, without relying on a trust center (108). Pre-distributed keying materials can be replaced in a secure manner with post-deployed keying materials by the network trust center. Nodes can establish further secure communications based on post-deployed keying materials.
Abstract:
The present invention relates to a method for operating a first node in a network, the network including a plurality of nodes, the method comprising (a) the first node having a first identifier joining the network by transmitting the first identifier to a second node having a second identifier, (b) the first node generating a first key on the basis of the second identifier (c) the first node authenticating the second node by means of the first key, (d) the first node communicating with a third node if the first and second keys are equal.
Abstract:
To improve the power efficiency of a monitoring system, especially for worn devices, the present invention provides a monitoring system (300) comprising a physiological signal monitor (310) configured to monitor at least one physiological signal; a processor (320) configured to receive the output signal of the physiological signal monitor and detect an abnormal occurrence of at least one physiological signal; and a movement detection sub-system (330) coupled to receive the output signal of the processor and configured to monitor the movement of a target body, based on the output signal of the processor, for detecting the abnormal situation. The power consumption of the whole system can be decreased by using the monitoring result of physiological signals as a trigger for the movement detection sub- system.
Abstract:
The invention relates in general to a network and to a method for initializing a trust center link key. According to an embodiment of the invention, a network is provided with a new node (106) comprising node specific cryptographic keying material, wherein the new node is configured to specify an cryptographic key based on the node specific cryptographic keying material, a first node (102) requiring the cryptographic key for a network security initialization and means (108) for providing a missing cryptographic key to the first node from a storage different to the new node, wherein the missing cryptographic key is equal to the cryptographic key.