Abstract:
The invention relates to a device for generating X-rays (18) comprising an electron source (3) for emitting electrons accommodated in a vacuum space (2), a liquid metal circuit including a liquid metal for emitting X-rays as a result of the incidence of electrons and a pumping means (11) for causing a flow of the liquid metal through a constriction (7) where the electrons emitted by the electron source (3) impinge upon the liquid metal, and a radiation window (12) bounding said constriction (7), which is transparent to electrons and X-rays and separates the constriction (7) from the vacuum space (2). To provide a device for generating X-rays in which a cross-sectional area of the constriction substantially corresponds to an intended, desired cross-sectional area due to a self-regulating process without the need for external or additional components or electronics, it is proposed that said constriction (7) being bounded by a compensation window (13) opposite of said radiation window (12), which separates the constriction (7) from a pressure chamber (14) containing liquid metal provided by said liquid metal circuit via a connection (15), and which, during operation, has a profile (p') as a result of a deformation caused by a pressure in the pressure chamber (14) different from the pressure in the constriction (7) which substantially matches a profile (p) which the radiation window (12) has, during operation, as a result of a deformation of the radiation window (12) caused by a pressure of the liquid metal in the constriction (7).
Abstract:
The invention relates to a device for generating X-rays (18) comprising an electron source (3) for emitting electrons accommodated in a vacuum space (2), a liquid metal circuit including a liquid metal for emitting X-rays as a result of the incidence of electrons and a pumping means (11) for causing a flow of the liquid metal through a constriction (7) where the electrons emitted by the electron source (3) impinge upon the liquid metal, and a radiation window (12) bounding said constriction (7), which is transparent to electrons and X-rays and separates the constriction (7) from the vacuum space (2). To provide a device for generating X-rays in which a cross-sectional area of the constriction substantially corresponds to an intended, desired cross-sectional area due to a self-regulating process without the need for external or additional components or electronics, it is proposed that said constriction (7) being bounded by a compensation window (13) opposite of said radiation window (12), which separates the constriction (7) from a pressure chamber (14) containing liquid metal provided by said liquid metal circuit via a connection (15), and which, during operation, has a profile (p') as a result of a deformation caused by a pressure in the pressure chamber (14) different from the pressure in the constriction (7) which substantially matches a profile (p) which the radiation window (12) has, during operation, as a result of a deformation of the radiation window (12) caused by a pressure of the liquid metal in the constriction (7).
Abstract:
The invention relates to a detection apparatus for detecting radiation. The detection apparatus comprises a GOS material (20) for generating scintillation light depending on the detected radiation (25), an optical filter (24) for reducing the intensity of a part of the scintillation light having a wavelength being larger than 650 nm, and a detection unit (21) for detecting the filtered scintillation light. Because of the filtering procedure relatively slow components, i.e. components corresponding to a relatively large decay time, of the scintillation light weakly constribute to the detection process or are not detected at all by the detection unit, thereby increasing the temporal resolution of the detection apparatus. The resulting fast detection apparatus can be suitable for kVp-switching computed tomography systems.
Abstract:
Detection apparatus for detecting radiation The invention relates to a detection apparatus for detecting radiation. The detection apparatus comprises at least two scintillators (14, 15) having different temporal behaviors, each generating scintillation light upon reception of radiation, wherein the generated scintillation light is commonly detected by a scintillation light detection unit (16), thereby generating a common light detection signal. A detection values determining unit determines first detection values by applying a first determination process and second detection values by applying a second determination process, which is different to the first determination process, on the detection signal. The first determination process includes frequency filtering the detection signal. Since the scintillation light of the different scintilla- tors is collectively detected by the same scintillation light detection unit, detection arrangements with, for example, side-looking photodiodes for separately detecting the different scintillation light of the different scintillators are not necessarily required, thereby reducing the technical complexity of the detection apparatus.
Abstract:
According to an exemplary embodiment an imaging system (100) for examining an object under examination comprises a scanning unit, wherein the scanning unit comprises a radiation source (106, 108), and a detection unit (107, 109), wherein the scanning unit is adapted to emit a radiation beam (123), which radiation beam follows a linear movement of the object under examination such that a predetermined region of the object under examination is scanned while the object under examination moves.
Abstract:
Whereas the CT image can be acquired in a single revolution, the CSCT image acquisition may require several revolutions. According to an exemplary embodiment of the present invention, a CT/CSCT apparatus may be provided which uses CT data acquired during the first revolution to optimize acquisition parameters for the subsequent revolutions. Furthermore, projection data acquired with a pre-scanner may also be used for determining current modulation or setting an optimum voltage for the subsequent CSCT scan.
Abstract:
The invention relates to an imaging system (30) for imaging an object. A projection data providing unit (31) provides acquired spectral projection data of an object comprising at least two components, and a reconstruction unit (10) iteratively reconstructs at least two final component images of the object by performing several iteration steps, in which at least two intermediate component images are updated based on the acquired spectral projection data and a penalty term, which is indicative of the correlated noise between the at least two intermediate component images. Since the at least two intermediate component images are updated based on the acquired spectral projection data and a penalty term, which is indicative of the correlated noise, correlated noise is penalized during the iterative reconstruction. The finally resulting component images of the object are therefore less corrupted by correlated noise and have an improved image quality.
Abstract:
Tomosynthesis system with a rotating anode X-ray tube enabling a circular scan trajectory, wherein the X-ray tube 1 may be equipped witha large number ofcathodes (21, 22) distributed around an anode. This allows to generate X-rays (41, 42) at focal spot positions (11, 12), for example evenly distributed on a for example circular line (14) on the surface (15) of an anode (10). The object (61) may be located on the (10) axis of rotation (6) of the anode at some distance to the source. For an examination, the object (61) may be exposed to X-ray beams (41, 42) generated successively on all focal spot positions (11, 12), wherein no movement of the X-ray tube 1 is necessary. The transmitted X-ray intensities may be measured by a flat panel detector (50) to achieve a reconstructed three-dimensional image data.
Abstract:
The invention relates to a beam filter (10) that can particularly be used in spectral CT-applications for producing a desired intensity profile of a radiation beam without changing its spectral composition. In a preferred embodiment, the beam filter (10) comprises a stack of absorbing sheets (111) that are separated by wedge-shaped spaces (112) and focused to a radiation source (1). Furthermore, the absorbing sheets have a varying width in direct ion of the radiation. Different fractions of the radiation source (1) area are therefore masked by the beam filter (10) at different points (A, B) on a detector area (2). The absorbing sheets preferably comprise a material that is highly absorbing for the radiation to be filtered.