Abstract:
Provided is a grain-oriented electric steel sheet having superior magnetic property and to a grain-oriented electric steel sheet including 2.0 to 4.5 weight % of Si, 0.001 to 0.10 weight % of C, 0.010 weight % or lower of Al, 0.08 weight % or lower of Mn, 0.005 weight % or lower of N, 0.002 to 0.050 weight % of S, the remainder being Fe and other unavoidable impurities. The steel sheet having been subjected to secondary recrystallization using at least any one of grain boundary-segregated elementary S and an FeS precipitate as a grain growth inhibitor.
Abstract:
A grain-oriented electrical steel sheet of an embodiment of the present invention comprises Si: 1.0% to 7.0% and Y: 0.005% to 0.5% by wt %, and the remainder comprising Fe and other inevitable impurities, and 10 pieces or less of inclusions comprising Y and having a diameter of 30 nm to 5 μm per area of 1 mm2.
Abstract:
An oriented electrical steel sheet includes Ba at about 0.005 wt % to about 0.5 wt % inclusive, Y at about 0.005 wt % to about 0.5 wt % inclusive, or a composite of Ba and Y at about 0.005 wt % to about 0.5 wt % inclusive, the remainder including Fe and impurities, based on 100 wt % of a total composition of a base steel sheet thereof.
Abstract:
Provided is a grain-oriented electric steel sheet having superior magnetic property and to a grain-oriented electric steel sheet including 2.0 to 4.5 weight % of Si, 0.001 to 0.10 weight % of C, 0.010 weight % or lower of Al, 0.08 weight % or lower of Mn, 0.005 weight % or lower of N, 0.002 to 0.050 weight % of S, the remainder being Fe and other unavoidable impurities. The steel sheet having been subjected to secondary recrystallization using at least any one of grain boundary-segregated elementary S and an FeS precipitate as a grain growth inhibitor.
Abstract:
Disclosed are an oriented electrical steel sheet and a manufacturing method thereof. An exemplary embodiment of the present invention provides a method of manufacturing an oriented electrical steel sheet, including: providing a slab including Si at 1.0 to 4.0 wt %, C at 0.1 to 0.4 wt %, and the remaining portion including Fe and other inevitably incorporated impurities; reheating the slab; producing a hot rolled steel sheet by hot rolling the slab; performing annealing of the hot rolled steel sheet; cold rolling the annealed hot rolled steel sheet; decarburizing and primary annealing the cold rolled steel sheet; cold rolling the decarburized and annealed steel sheet; and secondary annealing the cold rolled steel sheet.
Abstract:
A grain-oriented electrical steel sheet of an embodiment of the present invention comprises Si: 1.0% to 7.0% and Y: 0.005% to 0.5% by wt %, and the remainder comprising Fe and other inevitable impurities, and 10 pieces or less of inclusions comprising Y and having a diameter of 30 nm to 5 μm per area of 1 mm2.
Abstract:
An exemplary embodiment in the present disclosure provides a grain-oriented electrical steel sheet containing, by wt %: 3.0 to 4.5% of Si; 0.05 to 0.2% of Mn; 0.015 to 0.035% of Al; 0.0015% or less (excluding 0%) of C; 0.0015% or less (excluding 0%) of N; 0.0015% or less (excluding 0%) of S; and a balance of Fe and other unavoidable impurities, wherein the grain-oriented electrical steel sheet satisfies the following Relational Expressions 1 and 2: (W13/50/W17/50)≤0.57 [Relational Expression 1] (W15/50/W17/50)≤0.76 [Relational Expression 2] where Wx/y represents a core loss value under conditions in which a magnitude of an applied magnetic field is x/10 T and a frequency is y Hz.
Abstract:
Disclosed are an oriented electrical steel sheet and a manufacturing method thereof. An exemplary embodiment of the present invention provides a method of manufacturing an oriented electrical steel sheet, including: providing a slab including Si at 1.0 to 4.0 wt %, C at 0.1 to 0.4 wt %, and the remaining portion including Fe and other inevitably incorporated impurities; reheating the slab; producing a hot rolled steel sheet by hot rolling the slab; performing annealing of the hot rolled steel sheet; cold rolling the annealed hot rolled steel sheet; decarburizing and annealing the cold rolled steel sheet; cold rolling the decarburized and annealed steel sheet; and final annealing the cold rolled steel sheet.
Abstract:
A method for manufacturing a grain-oriented electrical steel sheet, according to an embodiment of the present invention includes: heating a slab, based on 100 wt % of a total composition thereof, including N at 0.0005 wt % to 0.015 wt %, Ti at 0.0001 wt % to 0.020 wt %, V at 0.0001 wt % to 0.020 wt %, Nb at 0.0001 wt % to 0.020 wt %, B at 0.0001 wt % to 0.020 wt %, and the remaining portion including Fe and other impurities, and then hot rolling it to prepare a hot-rolled steel sheet; annealing the hot-rolled steel sheet; after the hot-rolled steel sheet is annealed, cooling the hot-rolled steel sheet, and then cold rolling it to prepare a cold-rolled steel sheet; decarburization-annealing the cold-rolled steel sheet and then nitriding-annealing it, or simultaneously performing the decarburization-annealing and the nitriding-annealing; and final-annealing the decarburization-annealed and nitriding-annealed steel sheet.
Abstract:
The grain-oriented electrical steel sheet according to one embodiment of the present invention includes, by weight, Si: 1.0 to 7.0%, B: 0.001 to 0.1%, and Ba and Y individually or in a total amount of 0.005 to 0.5%, and the remainder includes Fe and other unavoidable impurities.