Abstract:
Methods, systems, and devices for wireless communications are described. Some methods include receiving an indication of a traffic flow to be served by a wireless communication system, determining scheduling information for the traffic flow based on the indication, wherein the scheduling information comprises one or more of a time offset, a reliability, and a minimum throughput of delivery of data traffic for the flow, and transmitting the scheduling information in response to the indication. Some methods include determining delta time offset information relative to one or more existing time offsets of packet arrivals of one or more traffic flows for scheduling transmissions of a first traffic flow in the wireless communication system, and transmitting the delta time offset information to a node of the first traffic flow for scheduling transmissions of the first traffic flow in the wireless communication system. Other aspects and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may obtain access to a base station by performing an initial access procedure within an initial access bandwidth that contains control channel resources. The UE may receive a configuration of a downlink bandwidth part (BWP) following the initial access procedure, and may determine that the downlink BWP fully contains the initial access bandwidth. In some cases, the UE may make the determination based on an indication sent from the base station. For instance, the indication may be provided as part of one or more control channel configurations transmitted to the UE. Based on determining that the downlink BWP fully contains the initial access bandwidth, the UE may monitor for control information in the downlink BWP using control channel resources in the downlink BWP that correspond to control channel resources used in the initial access bandwidth.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may transmit and a user equipment (UE) may receive cloned bandwidth part configuration information. In some aspects, the UE may determine a linkage between a primary bandwidth part and the cloned bandwidth part. In some aspects, the BS may transmit and the UE may receive a downlink control information message identifying the primary bandwidth part to signal a bandwidth part switch for the primary bandwidth part and a first bandwidth part or identifying the cloned bandwidth part to signal the bandwidth part switch for the primary bandwidth part and a second bandwidth part. In some aspects, the UE may perform the bandwidth part switch based at least in part on the downlink control information message. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described According to one or more aspects of the present disclosure, a user equipment (UE) may receive an uplink grant of an uplink transmission from the UE to the base station. The UE may identify a packet transmission mode indicated in the uplink grant. The indication may specify whether the UE is to transmit the uplink transmission using a default mode, such as a first-in first-out mode, or a packet-group transmission mode. The UE may determine packets for inclusion in a transmission payload for the uplink transmission based on the identified transmission mode and transmit the uplink transmission in accordance with the packet transmission mode and the uplink grant.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may transmit and a user equipment (UE) may receive cloned bandwidth part configuration information. In some aspects, the UE may determine a linkage between a primary bandwidth part and the cloned bandwidth part. In some aspects, the BS may transmit and the UE may receive a downlink control information message identifying the primary bandwidth part to signal a bandwidth part switch for the primary bandwidth part and a first bandwidth part or identifying the cloned bandwidth part to signal the bandwidth part switch for the primary bandwidth part and a second bandwidth part. In some aspects, the UE may perform the bandwidth part switch based at least in part on the downlink control information message. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described According to one or more aspects of the present disclosure, a user equipment (UE) may receive an uplink grant of an uplink transmission from the UE to the base station. The UE may identify a packet transmission mode indicated in the uplink grant. The indication may specify whether the UE is to transmit the uplink transmission using a default mode, such as a first-in first-out mode, or a packet-group transmission mode. The UE may determine packets for inclusion in a transmission payload for the uplink transmission based on the identified transmission mode and transmit the uplink transmission in accordance with the packet transmission mode and the uplink grant.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may transmit and a user equipment (UE) may receive cloned bandwidth part configuration information. In some aspects, the UE may determine a linkage between a primary bandwidth part and the cloned bandwidth part. In some aspects, the BS may transmit and the UE may receive a downlink control information message identifying the primary bandwidth part to signal a bandwidth part switch for the primary bandwidth part and a first bandwidth part or identifying the cloned bandwidth part to signal the bandwidth part switch for the primary bandwidth part and a second bandwidth part. In some aspects, the UE may perform the bandwidth part switch based at least in part on the downlink control information message. Numerous other aspects are provided.
Abstract:
A method, apparatus are described for a cloud based radio access network (RAN). The method may include transmitting a first message from a base station to a user equipment (UE), determining that a second message from the UE is not received by a media access control (MAC) scheduler within a pre-determined time, delaying re-transmission of the first message or transmission of a third message from the base station to the UE, and scheduling other hybrid automatic repeat request (HARQ) processes of the UE in intervening sub-frames. The method may include receiving a first message from a UE at a base station, determining that a second message from the base station cannot be constructed within a pre-determined time from delays in receiving assignments from a Cloud, constructing and transmitting the second message to UEs based on assignments received earlier from the Cloud, and suspending an HARQ process associated with other UEs.