Abstract:
A control mechanism that can be used to control a SIGMADELTA ADC to provide the required level of performance while reducing power consumption. The SIGMADELTA ADC is designed with multiple stages (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMADELTA ADC that is similar to the SIGMADELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditioned samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMADELTA stages in the SIGMADELTA ADC.
Abstract:
A control mechanism that can be used to control a SIGMADELTA ADC to provide the required level of performance while reducing power consumption. The SIGMADELTA ADC is designed with multiple stages (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMADELTA ADC that is similar to the SIGMADELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditioned samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMADELTA stages in the SIGMADELTA ADC.
Abstract:
A control mechanism that can be used to control a .SIGMA..DELTA. to provide the required level of performance while reducing power consumption. The .SIGMA..DELTA. ADC is designe dwith multiple stage (i.e., loops or sections) , and provides improved performance (e.g., higher dynamic range) as more stage s are enabled. The control mechanism selectively enables a sufficient number o f stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a .SIGMA..DELTA. ADC that is similar to the .SIGMA..DELTA. ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detecto r stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditined samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more .SIGMA..DELTA. stages in the .SIGMA..DELTA. ADC.
Abstract:
A control mechanism that can be used to control a .SIGMA..DELTA. to provide the required level of performance while reducing power consumption. The .SIGMA..DELTA. ADC is designe dwith multiple stage (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a .SIGMA..DELTA. ADC that is similar to the .SIGMA..DELTA. ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditined samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more .SIGMA..DELTA. stages in the .SIGMA..DELTA. ADC.
Abstract:
A control mechanism that can be used to control a SIGMADELTA ADC to provide the required level of performance while reducing power consumption. The SIGMADELTA ADC is designed with multiple stages (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMADELTA ADC that is similar to the SIGMADELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditioned samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMADELTA stages in the SIGMADELTA ADC.
Abstract:
A control mechanism that can be used to control a SIGMADELTA ADC to provide the required level of performance while reducing power consumption. The SIGMADELTA ADC is designed with multiple stages (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMADELTA ADC that is similar to the SIGMADELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditioned samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMADELTA stages in the SIGMADELTA ADC.
Abstract:
A control mechanism that can be used to control a SIGMADELTA ADC to provide the required level of performance while reducing power consumption. The SIGMADELTA ADC is designed with multiple stages (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMADELTA ADC that is similar to the SIGMADELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditioned samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMADELTA stages in the SIGMADELTA ADC.
Abstract:
A control mechanism that can be used to control a SIGMADELTA ADC to provide the required level of performance while reducing power consumption. The SIGMADELTA ADC is designed with multiple stages (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMADELTA ADC that is similar to the SIGMADELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditioned samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMADELTA stages in the SIGMADELTA ADC.
Abstract:
The present disclosure includes circuits and methods for generating bleeding currents. In one embodiment, a pass transistor of a voltage regulator receives a voltage from a feedback circuit. A negative resistance circuit is coupled to a node to produce a bleeding current that turns on when needed and is otherwise off to save power. In one embodiment, the negative resistance circuit includes stacked current mirrors and a resistor. In another embodiment, the resistor has a first terminal that receives the voltage from the feedback circuit and a second terminal is coupled to a constant reference voltage that tracks the input voltage.
Abstract:
A control mechanism that can be used to control a SIGMA DELTA to provide the required level of performance while reducing power consumption. The SIGMA DELTA ADC is designe dwith multiple stage (i.e., loops or sections), and provides improved performance (e.g., higher dynamic range) as more stages are enabled. The control mechanism selectively enables a sufficient number of stages to provide the required performance and disables remaining stages to conserve power. The control mechanism achieves this by measuring one or more characteristics (e.g., signal level) of the ADC input signal through a SIGMA DELTA ADC that is similar to the SIGMA DELTA ADC on the signal path, comparing the measured characteristic(s) to particular threshold level(s), and controlling the stages such that the desired objectives are achieved. In one implementation, the control circuit includes one or more detector stages, a conditioning circuit, and a signal processor. The detector stage(s) receive the input signal and provide a detected signal. The conditioning circuit receives the detected signal and provides conditined samples. The signal processor receives the conditioned samples and provides a control signal that selectively disables zero or more SIGMA DELTA stages in the SIGMA DELTA ADC.