Abstract:
A detection circuit that detects the open and close state of a flip cover of a communications device. The detection circuit includes a resistive network and an analog-to-digital converter (ADC). When the flip cover is in the closed position, the circuit detects a unique resistive value through a set of contacts. This voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. When the flip cover is in the open position, the contacts are broken, thus, disabling the detection of the unique resistive value. The resulting voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. Software, programmed within the microprocessor, enables the communications device to operate in the appropriate mode according to the detection of the open/close state of the flip cover.
Abstract:
A detection circuit that detects the open and close state of a flip cover of a communications device. The detection circuit includes a resistive network and an analog-to-digital converter (ADC). When the flip cover is in the closed position, the circuit detects a unique resistive value through a set of contacts. This voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. When the flip cover is in the open position, the contacts are broken, thus, disabling the detection of the unique resistive value. The resulting voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. Software, programmed within the microprocessor, enables the communications device to operate in the appropriate mode according to the detection of the open/close state of the flip cover.
Abstract:
A detection circuit that detects the open and close state of a flip cover of a communications device. The detection circuit includes a resistive network and an analog-to-digital converter (ADC). When the flip cover is in the closed position, the circuit detects a unique resistive value through a set of contacts. This voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. When the flip cover is in the open position, the contacts are broken, thus, disabling the detection of the unique resistive value. The resulting voltage level is converted from an analog signal to a digital signal via the AD for input into a microprocessor. Software, programmed within the microprocessor, enables the communications device to operate in the appropriate mode according to the detection of the open/close state of the flip cover.
Abstract:
A detection circuit that detects the open and close state of a flip cover of a communications device. The detection circuit includes a resistive network an d an analog-to-digital converter (ADC). When the flip cover is in the closed position, the circuit detects a unique resistive value through a set of contacts. This voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. When the flip cover is i n the open position, the contacts are broken, thus, disabling the detection of the unique resistive value. The resulting voltage level is converted from an analog signal to a digital signal via the AD for input into a microprocessor . Software, programmed within the microprocessor, enables the communications device to operate in the appropriate mode according to the detection of the open/close state of the flip cover.
Abstract:
A detection circuit that detects the open and close state of a flip cover of a communications device. The detection circuit includes a resistive network and an analog-to-digital converter (ADC). When the flip cover is in the closed position, the circuit detects a unique resistive value through a set of contacts. This voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. When the flip cover is in the open position, the contacts are broken, thus, disabling the detection of the unique resistive value. The resulting voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. Software, programmed within the microprocessor, enables the communications device to operate in the appropriate mode according to the detection of the open/close state of the flip cover.
Abstract:
A detection circuit that detects the open and close state of a flip cover of a communications device. The detection circuit includes a resistive network and an analog-to-digital converter (ADC). When the flip cover is in the closed position, the circuit detects a unique resistive value through a set of contacts. This voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. When the flip cover is in the open position, the contacts are broken, thus, disabling the detection of the unique resistive value. The resulting voltage level is converted from an analog signal to a digital signal via the ADC for input into a microprocessor. Software, programmed within the microprocessor, enables the communications device to operate in the appropriate mode according to the detection of the open/close state of the flip cover.
Abstract:
This disclosure describes techniques that can facilitate multimedia telephony. In one example, a method for communication of multimedia data comprises determining a first level of throughput associated with multimedia data communication from a first access terminal to a network, determining a second level of throughput associated with multimedia data communication from the network to a second access terminal based on feedback from the second access terminal to the first access terminal via the network, determining a budget associated with communication of a video unit of the multimedia data, and coding the video unit of the multimedia data based on the budget and the first and second levels of throughput.