Abstract:
Techniques to linearly (in dB) adjust the gains of variable gain elements (i.e., variable gain amplifiers or VGAs) in a receiver or transmitter. An input control signal is provided to a conditioning circuit that conditions the control signal to achieve various signal characteristics. The input control signal is limited to within a particular range of values, temperature compensated, scaled (or normalized) to the supply voltages, shifted with an offset, or manipulated in other fashions. The conditioned signal is then provided to an input stage of a linearizer that generates a set of exponentially related signals. This is achieved using, for example, a differential amplifier in which the conditioned control signal is applied to the inputs of the differential amplifier and the collector currents from the differential amplifier comprises the exponentially related signals. An output stage within the linearizer receives the exponentially related signals and, in response, generates a gain control signal. By approximately matching the output stage to a gain stage of the variable gain element and by using the gain control signal generated by output stage, the gain transfer function of the VGA approximates that of the exponentially related signals.
Abstract:
Techniques to linearly (in dB) adjust the gains of variable gain elements (i.e., variable gain amplifiers or VGAs) in a receiver or transmitter. An input control signal is provided to a conditioning circuit that conditions the control signal to achieve various signal characteristics. The input control signal is limited to within a particular range of values, temperature compensated, scaled (or normalized) to the supply voltages, shifted with an offset, or manipulated in other fashions. The conditioned signal is then provided to an input stage of a linearizer that generates a set of exponentially related signals. This is achieved using, for example, a differential amplifier in which the conditioned control signal is applied to the inputs of the differential amplifier and the collector currents from the differential amplifier comprises the exponentially related signals. An output stage within the linearizer receives the exponentially related signals and, in response, generates a gain control signal. By approximately matching the output stage to a gain stage of the variable gain element and by using the gain control signal generated by output stage, the gain transfer function of the VGA approximates that of the exponentially related signals.
Abstract:
Techniques to linearly (in dB) adjust the gains of variable gain elements (i.e., variable gain amplifiers or VGAs) in a receiver or transmitter. An input control signal is provided to a conditioning circuit that conditions the control signal to achieve various signal characteristics. The input control signal is limited to within a particular range of values, temperature compensated, scaled (or normalized) to the supply voltages, shifted with an offset, or manipulated in other fashions. The conditioned signal is then provided to an input stage of a linearizer that generates a set of exponentially related signals. This is achieved using, for example, a differential amplifier in which the conditioned control signal is applied to the inputs of the differential amplifier and the collector currents from the differential amplifier comprises the exponentially related signals. An output stage within the linearizer receives the exponentially related signals and, in response, generates a gain control signal. By approximately matching the output stage to a gain stage of the variable gain element and by using the gain control signal generated by output stage, the gain transfer function of the VGA approximates that of the exponentially related signals.
Abstract:
Techniques to linearly (in dB) adjust the gains of variable gain elements (i.e., variable gain amplifiers or VGAs) in a receiver of transmitter. An input control signal is provided to a conditioning circuit that conditions the control signal to achieve various signal characteristics. The input control signal is limited to within a particular range of values, temperature compensated, scaled (or normalized) to the supply voltages, shifted with an offset, or manipulated in other fashions. The conditioned signal is then provided to an input stage of a linearizer that generates a set of exponentially related signals. This is achieved using, for example, a differential amplifier in which the conditioned control signal is applied to the inputs of the differential amplifier and the collector currents from the differential amplifier comprises the exponentially related signals. An output stage within the linearizer receives the exponentially related signals and, in response, generates a gain control signal. By approximately matching the output stage to a gain stage of the variable gain element and by using the gain control signal generated by output stage, the gain transfer function of the VGA approximates that of the exponentially related signals.
Abstract:
A technique of adjusting the bias current of an active circuit in a transmit signal path based on the signal gain(s) of variable gain element(s) located prior to the active circuit. The technique is particularly advantageous when the gain element(s) are located on one IC (e.g., that implements an IF portion) and the active circuit is implemented on another IC (e.g., that implements a RF portion). The bias current of the active circuit is set based, in part, on the input power level, which may be inferred from the gain control signal(s) used to control the preceding variable gain elements. Initially, at least one gain control signal. A bias current for the active circuit is then determined based, in part, on the estimated input signal level. The active circuit is biased with the determined bias current. The biased current can be limited to a range defined by an upper bias current and a lower bias current.