Abstract:
An apparatus for wirelessly receiving power via a wireless field generated by a transmitter includes a resonator configured to generate electrical current to power or charge a load based on a voltage induced in the resonator in response to the wireless field, at least one variable capacitor electrically coupled to the resonator and configured to adjust a first capacitance of the at least one variable capacitor responsive to a first control signal, and a control circuit configured to adjust and apply the first control signal to the at least one variable capacitor to simultaneously adjust a resonant frequency of the resonator and a current output to the load based on an electrical characteristic indicative of a level of power output to the load.
Abstract:
Exemplary embodiments are directed to an apparatus for controlling magnetic field distribution including a wireless transmit antenna configured to generate a magnetic field for wirelessly transferring power to a charge-receiving device with the wireless transmit antenna, a parasitic antenna located near the wireless transmit antenna, and a switch configured to selectively enable the parasitic antenna to modify the magnetic field in response to an antenna parameter that indicates the presence of the charge-receiving device relative to the parasitic antenna.
Abstract:
Systems, methods and apparatus are disclosed for a dual mode wireless power receiver. In accordance with on aspect, an apparatus for receiving wireless power is provided. The apparatus includes a first coil configured to wirelessly receive power from a first transmitter configured to generate a first alternating magnetic field having a first frequency. The apparatus further includes a second coil configured to wirelessly receive power from a second transmitter configured to generate a second alternating magnetic field having a second frequency higher than the first frequency. The second coil is positioned to enclose the first coil. A first coupling factor between the first coil and a coil of the first transmitter is higher than a second coupling factor between the second coil and a coil of the second transmitter when the first and second coils are positioned within respective charging regions of the first and second transmitters.
Abstract:
A circuit converts an input voltage to an output voltage. The circuit includes a first stage voltage converter that receives the input voltage and converts the input voltage. The first stage voltage converter includes a first buck converter having a double rail output: a first rail at a high intermediate voltage and a second rail at a low intermediate voltage. The circuit also includes a second stage voltage converter that receives the output rails and produces the output voltage.
Abstract:
Certain aspects of the present disclosure provide a semiconductor device. One example semiconductor device generally includes a first semiconductor region; a first non-insulative region disposed adjacent to a first lateral side of the first semiconductor region; a second non-insulative region disposed adjacent to a second lateral side of the first semiconductor region, the second lateral side being opposite to the first lateral side; a second semiconductor region disposed adjacent to a third lateral side of the first semiconductor region, the second semiconductor region and the first semiconductor region having at least one of different doping types or different doping concentrations; an insulative layer adjacent to a top side of the first semiconductor region; and a third non-insulative region, the insulative layer being disposed between the third non-insulative region and the first semiconductor region.
Abstract:
Certain aspects of the present disclosure provide a semiconductor variable capacitor based on a buried oxide process. The semiconductor variable capacitor generally includes a first conductive pad coupled to a first non-insulative region and a second conductive pad coupled to a second non-insulative region. The second non-insulative region may be coupled to a semiconductor region. The capacitor may also include a first control region coupled to the first semiconductor region such that a capacitance between the first conductive pad and the second conductive pad is configured to be adjusted by varying a control voltage applied to the first control region. The capacitor also includes an insulator region disposed below the semiconductor region, wherein at least a portion of the first non-insulative region is separated from the second non-insulative region by the insulator region such that the first conductive pad is electrically isolated from the second conductive pad.
Abstract:
Devices and methods for distributing power are disclosed. For example, one device includes multiple assemblable elements, each assemblable element is configured to permit interlocking between one or more of the multiple assemblable elements. The multiple assemblable elements each include a portion of a coil. The portions of the coil are electrically interconnected and configured to provide wireless power to a receiving device.
Abstract:
An electronic apparatus may include an electrically conductive body configured to magnetically couple to a first magnetic field. A first tuning element may be connected to the electrically conductive body. An electrically conductive coil may be wound about an opening defined by the electrically conductive body, and configured to magnetically couple to a second magnetic field.
Abstract:
Disclosed is an electronic device comprising a plurality of power receiving elements. Each power receiving element may be configured to electromagnetically couple to an externally generated magnetic field to receive power wirelessly. A plurality of switches may be connected to the plurality of power receiving elements. An output circuit may provide wirelessly received power to the electronic device. The plurality of switches may be configured to selectively short circuit at least one of the plurality of power receiving elements.
Abstract:
Disclosed is a current sensor (600) that senses current flow in a conductor (604) by coupling a first magnetic field generated by the conductor to a sense element (602). The current sensor includes a shield (700) including a first material (702a,702b) that sandwiches the sense element to define a stack and a second material (704a,704b) that sandwiches the stack. The shield is configured to generate a second magnetic field, responsive to a third magnetic field external to the current sensor that opposes the third magnetic field. The shield is further configured to prevent production of a magnetic field that opposes the first magnetic field generated by the flow of current in the conductor.