Abstract:
Methods, devices, and computer program products for transmitting and receiving discovery and paging messages are described herein. In one aspect, an apparatus operable in a wireless communication system includes a receiver and transmitter. The receiver receives a registration packet from a first device. The registration packet indicates interest in a service provided by another device in a wireless communications network. The receiver further receives a discovery packet from a second device during a first discovery interval of a plurality of discovery intervals. The discovery packet advertises a service provided by the second device, and the plurality of discovery intervals include recurring time intervals when a plurality of devices are configured to transmit and receive discovery packets in the wireless communications network. The transmitter transmits a notification packet configured to enable the first device and the second device to communicate directly.
Abstract:
Methods and apparatus are described for efficiently suppressing transmission of signals from devices which are using a first protocol, in order to allow the frequency spectrum being used by devices using the first protocol to be used briefly for communication between devices using an alternative communications protocol. In some embodiments, the first protocol is WiFi and the alternative signaling protocol is a non-WiFi peer to peer communications protocol. A wireless communications device, e.g., a peer to peer wireless communications device, generates a signal suppression utility metric (SSUM). The signal suppression utility metric provides an indication of how useful transmitting a transmission suppression signal, e.g., a S-CTS signal which may be a CTS to self signal, will be at a given point in time. The wireless communications device decides whether or not to transmit a transmission suppression signal as a function of the signal suppression utility metric.
Abstract:
Methods and apparatus are described which increase the probability and/or frequency that devices with comparatively faster clocks in a network than other devices in the network will transmit beacon signals are described. As a result, devices with faster clocks will tend to drive system synchronization to convergence faster than if all devices transmitted beacons at the same rate, thus facilitating more reliable maintenance of system synchronization since the devices with faster clocks will tend to transmit more frequently.
Abstract:
Methods and apparatus are described for efficiently suppressing transmission of signals from devices which are using a first protocol, in order to allow the frequency spectrum being used by devices using the first protocol to be used briefly for communication between devices using an alternative communications protocol. In some embodiments, the first protocol is WiFi and the alternative signaling protocol is a non-WiFi peer to peer communications protocol. A wireless communications device, e.g., a peer to peer wireless communications device, generates a signal suppression utility metric (SSUM). The signal suppression utility metric provides an indication of how useful transmitting a transmission suppression signal, e.g., a S-CTS signal which may be a CTS to self signal, will be at a given point in time. The wireless communications device decides whether or not to transmit a transmission suppression signal as a function of the signal suppression utility metric.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be an eNB. The eNB informs UE(s) of a change in at least one of a first configuration for transmission of ACKs/NACKs by the UE(s) for DL transmissions received by the UE(s) or a second configuration for reception of ACKs/NACKs by the UE(s) for UL transmissions sent by the UE(s). The eNB indicates to the UE(s) one or more resources in which the UE(s) is to transmit the ACKs/NACKs for the received DL transmissions or is to receive the ACKs/NACKs for sent UL transmissions. The eNB indicates to the UE(s) a subset of the DL transmissions to the UE(s) for which the UE(s) is to transmit the ACKs/NACKs or a subset of the UL transmissions by the UE(s) for which the UE(s) is to receive the ACKs/NACKs.
Abstract:
A communications device synchronizes itself with respect to an external reference signal, e.g., a GPS signal. The communications device detects timing reference signals, e.g., beacon signals, from a communications network. If the communications device determines that the network is not synchronized to the external timing reference signal, the communications device operates as a master timing control device. In various embodiments, when operating as a master timing control device the wireless communications device communicates time stamps, e.g., in beacon signals, which indicate a greater passage of time than the actual passage of time. When operating as a master timing control device the communications device transmits network timing reference signals at a higher rate than is being used by the network to seize control of network timing and become the master timing control device. The communications device drives the network timing to synchronize network timing to the external timing reference.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be an eNB. The eNB informs UE(s) of a change in at least one of a first configuration for transmission of ACKs/NACKs by the UE(s) for DL transmissions received by the UE(s) or a second configuration for reception of ACKs/NACKs by the UE(s) for UL transmissions sent by the UE(s). The eNB indicates to the UE(s) one or more resources in which the UE(s) is to transmit the ACKs/NACKs for the received DL transmissions or is to receive the ACKs/NACKs for sent UL transmissions. The eNB indicates to the UE(s) a subset of the DL transmissions to the UE(s) for which the UE(s) is to transmit the ACKs/NACKs or a subset of the UL transmissions by the UE(s) for which the UE(s) is to receive the ACKs/NACKs.
Abstract:
Methods, devices, and computer program products for transmitting and receiving discovery and paging messages are described herein. In one aspect, an apparatus operable in a wireless communication system includes a transmitter and receiver. The transmitter transmits a discovery packet during a first discovery interval of a plurality of discovery intervals. The discovery packet advertises a service provided in a wireless communications network, and the plurality of discovery intervals include recurring time intervals when a plurality of devices are configured to transmit and receive discovery packets. The receiver receives a paging packet from a first device during a first paging interval of a plurality of paging intervals. The paging packet indicates interest in the service, and the plurality of paging intervals include recurring time intervals when the plurality of devices are configured to transmit and receive paging packets. The plurality of paging intervals do not overlap the plurality of discovery intervals.
Abstract:
A communications device synchronizes itself with respect to an external reference signal, e.g., a GPS signal. The communications device detects timing reference signals, e.g., beacon signals, from a communications network. If the communications device determines that the network is not synchronized to the external timing reference signal, the communications device operates as a master timing control device. In various embodiments, when operating as a master timing control device the wireless communications device communicates time stamps, e.g., in beacon signals, which indicate a greater passage of time than the actual passage of time. When operating as a master timing control device the communications device transmits network timing reference signals at a higher rate than is being used by the network to seize control of network timing and become the master timing control device. The communications device drives the network timing to synchronize network timing to the external timing reference.