Abstract:
A method for position determination based on carrier-phase measurements is disclosed. The method comprises receiving one or more downlink signals transmitted from a base station (BS) during a downlink period (410), wherein the downlink signals are modulated using a downlink carrier wave, measuring, during the downlink period, a first carrier phase associated with the downlink carrier wave (430), estimating, during an uplink period subsequent to the downlink period, an integer ambiguity (IA) change (470), and measuring, during a later downlink period subsequent to the uplink period, a second carrier phase based on the resolved first carrier phase and the estimated IA change (490).
Abstract:
Methods, systems, and devices for ranging are described. A multi-phase distributed ranging technique includes transmitting and receiving vehicle information messages during a first time interval, where the vehicle information messages include at least a vehicle identifier and resource information. The multi-phase technique further includes transmitting and receiving ranging signals during a second time interval, and determining times of arrival of received ranging signals. A centralized ranging technique includes receiving resource assignments from an access point, transmitting ranging signals according to the resource assignments, and determining times of arrival of received ranging signals.
Abstract:
Aspects of the present disclosure are directed to device-to-device (D2D) and, more particularly, vehicle-to-vehicle (V2V) communication in which an efficient ranging protocol allows efficient ranging-assisted vehicle positioning. A vehicle transmits a first slot ID in a first control period, to indicate a first time slot for transmitting a first ranging signal in a ranging cycle including a plurality of time slots. The vehicle transmits the first ranging signal in the first time slot in the ranging cycle. From a second vehicle, the first vehicle receives a second ranging signal in a second time slot that is different from the first time slot in the ranging cycle. The first vehicle determines a first time-of-arrival (ToA) of the second ranging signal when received by the first vehicle, and transmits the first ToA in a second control period.
Abstract:
Various aspects of the disclosure relate to limits for modulation and coding scheme (MCS) values. For example, a first set of limits (e.g., minimum and maximum limits) may be used for a first MCS table and a second set of limits may be used for a second MCS table. The disclosure also relates in some aspects to inter-device signaling that indicates which minimum and maximum limits for an MCS table are to be used for communication between the devices.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE), e.g., a vehicle in a group of platooning vehicles configured for wireless communications, may identify a travel direction of the group of platooning vehicles. The UE may identify a set of time-frequency radio resources allocated to the travel direction. The UE may perform inter-vehicle communications with one or more neighboring vehicles of the group of platooning vehicles using the set of time-frequency radio resources.
Abstract:
Aspects of the disclosure relate to beamforming from a vehicle user equipment (UE). In a first aspect, a beamform vector is selected based on beamform data received from a scheduling entity. Here, the beamform data corresponds to a path between a vehicle UE and a base station or another vehicle, and the beamform vector includes respective phases and amplitudes corresponding to each of a plurality of antennas of the vehicle UE. A beam is then generated in accordance with the beamform vector. In another aspect, a database of beamform data is maintained, and beamform data from the database is retrieved. Here, the retrieved beamform data corresponds to a particular location pair that includes a first location associated with a location of a vehicle UE, and a second location associated with a location of a base station or another vehicle. The beamform data is then transmitted to the vehicle UE.
Abstract:
Aspects of the present disclosure relate to wireless communications and, more particularly, to techniques for sharing sensor information. The techniques may be practiced, for example, in a vehicle to vehicle (V2V) environment, where frequency resources are mapped based on vehicle location(s).
Abstract:
Wireless communications systems and methods related to transmission of platoon information. A first vehicle in a vehicle platoon obtains a first radio resource spanning a frequency channel and a time period for synchronous transmission with at least a second vehicle in the vehicle platoon. The first vehicle transmits, synchronously with at least the second vehicle, information associated with the vehicle platoon in the frequency channel and the time period of the first radio resource. The first vehicle may obtain the first radio resource by requesting a transmission request from a wireless communication device and receiving a transmission grant indicating the first radio resource. Alternatively, the first vehicle may obtain the first radio resource by selecting the first radio resource based on at least one of a sensing report or a resource reservation received from the second vehicle.
Abstract:
Aspects described herein generally relate to communicating buffer status reports (BSR) in wireless communications. A BSR can be generated at a device indicating a size of each of a plurality of messages stored in a buffer of the device for communicating from the device to one or more other devices. The BSR can be transmitted to a base station to request resources for communicating one or more of the plurality of messages to the one or more other devices.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with minimizing device-to-device D2D ready-to-send/clear-to-send RTS/CTS signaling overhead resource usage. In one example, a WAN entity, e.g. eNB, is equipped to receive one or more channel gain values from a plurality of UEs, determine that a connection identification CID can be reused by multiple D2D links based on the received one or more channel gain values, and transmit information indicating that the CID may be reused. In another example, a UE is equipped to measure a direct power signals and an inverse power echoes on a CID used for a link formed between a third and fourth UE, and determine that the CID may potentially be reused by a link formed with a second UE for D2D RTS/CTS signaling, based at least in part on the measured direct power signals, measured the inverse power echoes, and a signal-to-interference ratio SIR threshold.