Abstract:
An HDLC accelerator includes a deframer and framer to respectively accelerate the deframing and framing processes for PPP packets. The deframer includes an input interface unit, a detection unit, a conversion unit, and an output interface unit. The input interface unit receives a packet of data to be deframed. The detection unit evaluates each data byte to detect for special bytes (e.g., flag, escape, and invalid bytes). The conversion unit deframes the received data by removing flag and escape bytes, "un-escaping" the data byte following each escape byte, providing a header word for each flag byte, and checking each deframed packet based on a frame check sequence (FCS) value associated with the packet. The output interface unit provides deframed data and may further perform byte alignment in providing the deframed data. A state control unit provides control signals indicative of specific tasks to be performed for deframing.
Abstract:
An HDLC accelerator includes a deframer and framer to respectively accelerate the deframing and framing processes for PPP packets. The deframer includes an input interface unit, a detection unit, a conversion unit, and an output interface unit. The input interface unit receives a packet of data to be deframed. The detection unit evaluates each data byte to detect for special bytes (e.g., flag, escape, and invalid bytes). The conversion unit deframes the received data by removing flag and escape bytes, "un-escaping" the data byte following each escape byte, providing a header word for each flag byte, and checking each deframed packet based on a frame check sequence (FCS) value associated with the packet. The output interface unit provides deframed data and may further perform byte alignment in providing the deframed data. A state control unit provides control signals indicative of specific tasks to be performed for deframing.
Abstract:
Systems, methods and apparatus for wireless communication are provided. In one aspect, the method comprises receiving at least one downlink packet. The method further comprises generating an acknowledge message in response to receiving the at least one downlink packet. The method further comprises prioritizing the acknowledge message in a buffer according to a probability, the probability based at least in part on a current utilization level of the buffer. The method may further comprise one or more of the following: setting the probability to a first value when the utilization level is below a first level, setting the probability to a second value when the utilization level is above the first level and below a second level, and setting the probability to a third value when the utilization level is above the second level. The second value may be adjusted based on feedback corresponding to a downlink throughput.
Abstract:
A method and system for transferring data bytes includes a first memory adapted to store a plurality of multiple-byte data words including header field bytes and one or more data field bytes. The system also includes a second memory adapted to store data field bytes transferred thereto from the first memory. A controller coupled to the first and second memories reads a data word including the header field byte and the one or more data field bytes out of the first memory. The system also includes a data packer coupled to the controller and the second memory. The controller and data packer cooperate to transfer the one or more data field bytes of the first data word read from the first memory to the second memory. The data packer stores only the one or more data field bytes in the second memory contiguously with a previously transferred and stored data field byte.
Abstract:
Transmitter architectures for a communications system having improved performance over conventional transmitter architectures. The improvements include a combination of the following: faster response time for the control signals, improved linearity, reduced interference, reduced power consumption, lower circuit complexity, and lower costs. For a cellular application, these improvements can lead to increased system capacity, smaller telephone size, increased talk and standby times, and greater acceptance of the product. Circuitry is provided to speed up the response time of a control signal. The control loop for various elements in the transmit signal path are integrated. A gain control mechanism allows for accurate adjustment of the output transmit power level. Control mechanisms are provided to power down the power amplifier, or th e entire transmit signal path, when not needed. The gains of the various elements in the transmit signal path are controlled to reduce transients in the output transmit power, and to also ensure that transients are downward.
Abstract:
A circuit for digital signal processing calls for the use of a variable length instruction set. An exemplary DSP includes a set of three data buses (108, 110, 112) over which data may be exchanged with a register bank (120) and three data memories (102, 103, 104). A register bank (120) may be used that has registers accessible by at least two processing units (128, 130). An instruction fetch unit (156) may be included that receives instructions of variable length stored in an instruction memory (152). The instruction memory (152) may be separate from the set of three data memories (102, 103, 104).
Abstract:
Transmitter architectures for a communications system having improved performance over conventional transmitter architectures. The improvements include a combination of the following: faster response time for the control signals, improved linearity, reduced interference, reduced power consumption, lower circuit complexity, and lower costs. For a cellular application, these improvements can lead to increased system capacity, smaller telephone size, increased talk and standby times, and greater acceptance of the product. Circuitry is provided to speed up the response time of a control signal. The control loop for various elements in the transmit signal path are integrated. A gain control mechanism allows for accurate adjustment of the output transmit power level. Control mechanisms are provided to power down the power amplifier, or th e entire transmit signal path, when not needed. The gains of the various elements in the transmit signal path are controlled to reduce transients in the output transmit power, and to also ensure that transients are downward.
Abstract:
An HDLC accelerator includes a deframer and framer to respectively accelerate the deframing and framing processes for PPP packets. The deframer includes an input interface unit, a detection unit, a conversion unit, and an output interface unit. The input interface unit receives a packet of data to be deframed. The detection unit evaluates each data byte to detect for special bytes (e.g., flag, escape, and invalid bytes). The conversion unit deframes the received data by removing flag and escape bytes, 'un-escaping' the data byte following each escape byte, providing a header word for each flag byte, and checking each deframed packet based on a frame check sequence (FCS) value associated with the packet. The output interface unit provides deframed data and may further perform byte alignment in providing the deframed data. A state control unit provides control signals indicative of specific tasks to be performed for deframing.