Abstract:
In one embodiment, a temperature management system comprises a plurality of temperature sensors on a chip, and a temperature manager. The temperature manager is configured to receive a plurality of temperature readings from the temperature sensors, to determine a plurality of power values based on the temperature readings, to determine a plurality of temperature values based on the determined power values, the determined temperature values corresponding to a plurality of different locations on the chip, and to estimate a temperature of a hotspot on the chip based on the determined temperature values.
Abstract:
A heat transfer component of a smart watch captures at least a portion of heat emitted by one or more electronic components located within an enclosure of the smart watch. The heat transfer component transfers at least a portion of the captured heat to a wrist band outside the enclosure of the smart watch. The wrist band allows for dissipation of at least a portion of the transferred heat through at least one surface of the wrist band.
Abstract:
A beat transfer component of a smart watch captures at least a portion of heat emitted by one or more electronic components located within an enclosure of the smart watch. The heat transfer component transfers at least a portion of the captured heat to a wrist band outside the enclosure of the smart watch. The wrist hand allows for dissipation of at least a portion of the transferred heat through at least one surface of the wrist band.
Abstract:
Systems and methods relate to thermal management of electronic headsets, such as virtual reality headsets. An electronic headset includes a body which can hold a processing system. A heat spreader is attached to the body, wherein the heat spreader includes a chimney. The chimney is designed to dissipate heat generated by the processing system. The heat spreader can be controlled to extend the chimney based on the heat perceived on external surfaces of the electronic headset which can come in contact with a user's skin. The chimney includes an air gap and provides a passive cooling system.
Abstract:
Methods and apparatus for implementing a synthetic jet to cool a device are provided. Examples of the techniques keep a device case cool enough to be hand-held, while allowing a higher temperature of a circuit component located in the case, to maximize circuit performance. In an example, provided is a mobile device including a synthetic jet configured to transfer heat within the mobile device. The synthetic jet can be embedded in a circuit board inside the mobile device such that the circuit board defines at least a portion of a chamber of the synthetic jet and defines an orifice of the synthetic jet. The device case can define at least one fluid channel inside the mobile device. Also, the circuit board can define a synthetic jet outlet configured to direct a fluid at the at least one fluid channel. Also provided are methods for controlling a synthetic jet.
Abstract:
A heat transfer component of a smart watch captures at least a portion of heat emitted by one or more electronic components located within an enclosure of the smart watch. The heat transfer component transfers at least a portion of the captured heat to a wrist band outside the enclosure of the smart watch. The wrist band allows for dissipation of at least a portion of the transferred heat through at least one surface of the wrist band.
Abstract:
Systems and methods relate to thermal management of electronic headsets, such as virtual reality headsets. An electronic headset includes a body which can hold a processing system. A heat spreader is attached to the body, wherein the heat spreader includes a chimney. The chimney is designed to dissipate heat generated by the processing system. The heat spreader can be controlled to extend the chimney based on the heat perceived on external surfaces of the electronic headset which can come in contact with a user's skin. The chimney includes an air gap and provides a passive cooling system.