Abstract:
A method for quantizing a neural network includes modeling noise of parameters of the neural network. The method also includes assigning grid values to each realization of the parameters according to a concrete distribution that depends on a local fixed-point quantization grid and the modeled noise and. The method further includes computing a fixed-point value representing parameters of a hard fixed-point quantized neural network.
Abstract:
Certain aspects of the present disclosure provide techniques for object positioning using mixture density networks, comprising: receiving radio frequency (RF) signal data collected in a physical space; generating a feature vector encoding the RF signal data by processing the RF signal data using a first neural network; processing the feature vector using a first mixture model to generate a first encoding tensor indicating a set of moving objects in the physical space, a first location tensor indicating a location of each of the moving objects in the physical space, and a first uncertainty tensor indicating uncertainty of the locations of each of the moving objects in the physical space; and outputting at least one location from the first location tensor.
Abstract:
A method of training a neural network with back propagation includes generating error events representing a gradient of a cost function for the neural network. The error events may be generated based on a forward pass through the neural network resulting from input events, weights of the neural network and events from a target signal. The method further includes updating the weights of the neural network based on the error events.
Abstract:
A method performed by a communication device includes generating an initial channel estimate of a channel for a current time step with a Kalman filter based on a first signal received at the communication device. The method also includes inferring, with a neural network, a residual of the initial channel estimate of the current time step. The method further includes updating the initial channel estimate of the current time step based on the residual.
Abstract:
In one embodiment, an electronic device includes a compute-in-memory (CIM) array that includes a plurality of columns. Each column includes a plurality of CIM cells connected to a corresponding read bitline, a plurality of offset cells configured to provide a programmable offset value for the column, and an analog-to-digital converter (ADC) having the corresponding bitline as a first input and configured to receive the programmable offset value. Each CIM cell is configured to store a corresponding weight.
Abstract:
A method performs XNOR-equivalent operations by adjusting column thresholds of a compute-in-memory array of an artificial neural network. The method includes adjusting an activation threshold generated for each column of the compute-in-memory array based on a function of a weight value and an activation value. The method also includes calculating a conversion bias current reference based on an input value from an input vector to the compute-in-memory array, the compute-in-memory array being programmed with a set of weights. The adjusted activation threshold and the conversion bias current reference are used as a threshold for determining the output values of the compute-in-memory array.
Abstract:
A method for processing temporally redundant data in an artificial neural network (ANN) includes encoding an input signal, received at an initial layer of the ANN, into an encoded signal. The encoded signal comprises the input signal and a rate of change of the input signal. The method also includes quantizing the encoded signal into integer values and computing an activation signal of a neuron in a next layer of the ANN based on the quantized encoded signal. The method further includes computing an activation signal of a neuron at each layer subsequent to the next layer to compute a full forward pass of the ANN. The method also includes back propagating approximated gradients and updating parameters of the ANN based on an approximate derivative of a loss with respect to the activation signal.
Abstract:
A method of computation in a deep neural network includes discretizing input signals and computing a temporal difference of the discrete input signals to produce a discretized temporal difference. The method also includes applying weights of a first layer of the deep neural network to the discretized temporal difference to create an output of a weight matrix. The output of the weight matrix is temporally summed with a previous output of the weight matrix. An activation function is applied to the temporally summed output to create a next input signal to a next layer of the deep neural network.