Abstract:
A system is disclosed including a three-dimensional object having a non- conforming region, and a photogrammetry device adapted to scan the three- dimensional object. The system further includes optical reference targets and a controller structured to perform functions of repairing the three-dimensional object. The controller commands the photogrammetry device to scan the three-dimensional object, and calculates a nominal surface location and contour for the three-dimensional object. The controller further commands the photogrammetry device to scan the non- conforming region of the three-dimensional object, and calculates a material removal tool path comprising a path adapted to remove material from the object located beyond the nominal surface location and contour. The controller generates a solid model of the damaged region of the object based on the nominal surface location and contour, and computes a material addition tool path according to the solid model.
Abstract:
A system is disclosed for depositing material on a component. The system includes a deposition device operatively coupled to a fiber optic Nd: YAG laser. The deposition device includes a focusing prism that focuses the Nd:YAG laser at a focal area on a bladed disk, where the focal area on the bladed disk is between two blades of the disk. The system further includes an imaging means that views the focal area of the component. The imaging means and the fiber optic Nd:YAG laser each are positioned in a substantially similar optical relationship to the focal area on the bladed disk. The system further includes an additive material delivery means that delivers additive material to the component at the focal area on the component.
Abstract:
A system is disclosed for depositing mate-rial on a component. The system includes a deposition de-vice operatively coupled to a fiber optic Nd: YAG laser. The deposition device includes a focusing prism that focuses the Nd:YAG laser at a focal area on a bladed disk, where the fo-cal area on the bladed disk is between two blades of the disk. The system further includes an imaging means that views the focal area of the component. The imaging means and the fiber optic Nd:YAG laser each are positioned in a sub-stantially similar optical relationship to the focal area on the bladed disk. The system further includes an additive material delivery means that delivers additive material to the compo-nent at the focal area on the component.
Abstract:
SYSTEM AND METHOD FOR COMPONENT MATERIAL ADDITION AbstractA system is disclosed for depositing material on a component. The system includes a deposition device operatively coupled to a fiber optic Nd: YAG laser. The deposition device includes a focusing prism that focuses the Nd:YAG laser at a focal area on a bladed disk, where the focal area on the bladed disk is between two blades of the disk. The system further includes an imaging means that views the focal area of the component. The imaging means and the fiber optic Nd:YAG laser each are positioned in a substantially similar optical relationship to the focal area on the bladed disk. The system further includes an additive material delivery means that delivers additive material to the component at the focal area on the component.Figure 1
Abstract:
An apparatus includes a prism mount that retains a prism. The mount includes a ledge that engages a first side of the prism, a support surface structured that engages a second side of the prism, a retaining member that slidably engages a third side of the prism, and a biasing member that biases the retaining member to an engaged position with the prism. The mount further includes a slot disposed between the ledge and the support surface. The retaining member includes a machine screw, and a nut confines the biasing member between the nut and a prism mount body. The biasing member is retained in a counterbore in the prism mount body, and an end of the machine screw protrudes from the counterbore. The prism mount body further includes an alignment slot at a fixed azimuthal angle, and the laser deposition device includes a protrusion that engages the alignment slot.
Abstract:
A method is disclosed including operations for repairing a component. The method includes providing a component including one of titanium and a titanium alloy, providing a laser deposition device, and providing a shielding means that ensures an oxygen content remains below a first threshold and that a water vapor content remains below a second threshold in a target area of the component. The method further includes depositing a metal material on the component, where the depositing includes operating the deposition device along a tool path including a plurality of tool passes, wherein the tool path further comprises a deposition device velocity specification, a laser power specification, and a specified delay time between each of the plurality of tool passes.
Abstract:
A method is disclosed including operations for repairing a component. The method includes providing a component including one of titanium and a titanium alloy, providing a laser deposition device, and providing a shielding means that ensures an oxygen content remains below a first threshold and that a water vapor content remains below a second threshold in a target area of the component. The method further includes depositing a metal material on the component, where the depositing includes operating the deposition device along a tool path including a plurality of tool passes, wherein the tool path further comprises a deposition device velocity specification, a laser power specification, and a specified delay time between each of the plurality of tool passes.
Abstract:
A system is disclosed including a three-dimensional object having a non- conforming region, and a photogrammetry device adapted to scan the three- dimensional object. The system further includes optical reference targets and a controller structured to perform functions of repairing the three-dimensional object. The controller commands the photogrammetry device to scan the three--dimensional object, and calculates a nominal surface location and contour for the three-dimensional object. The controller further commands the photogrammetry device to scan the non- conforming region of the three-dimensional object, and calculates a material removal tool path comprising a path adapted to remove material from the object located beyond the nominal surface location and contour. The controller generates a solid model of the damaged region of the object based on the nominal surface location and contour, and computes a material addition tool path according to the solid model.
Abstract:
A method is disclosed including operations for repairing a component. The method includes providing a component including one of titanium and a titanium alloy, providing a laser deposition device, and providing a shielding means that ensures an oxygen content remains below a first threshold and that a water vapor content remains below a second threshold in a target area of the component. The method further includes depositing a metal material on the component, where the depositing includes operating the deposition device along a tool path including a plurality of tool passes, wherein the tool path further comprises a deposition device velocity specification, a laser power specification, and a specified delay time between each of the plurality of tool passes.
Abstract:
An apparatus includes a prism mount that retains a prism. The mount includes a ledge that engages a first side of the prism, a support surface structured that engages a second side of the prism, a retaining member that slidably engages a third side of the prism, and a biasing member that biases the retaining member to an engaged position with the prism. The mount further includes a slot disposed between the ledge and the support surface. The retaining member includes a machine screw, and a nut confines the biasing member between the nut and a prism mount body. The biasing member is retained in a counterbore in the prism mount body, and an end of the machine screw protrudes from the counterbore. The prism mount body further includes an alignment slot at a fixed azimuthal angle, and the laser deposition device includes a protrusion that engages the alignment slot.