Abstract:
A pair of sensing capacitors, each having a capacitance C1 and C2 respectively, based on a process variable, are coupled to a bridge node which is coupled to a summing node. A reference capacitor, coupled to the summing node, has a capacitance CREF greater than an expected maximum difference between the capacitances of the pair of sensing capacitors. Switches selectively couple the sensing capacitors and the reference capacitor to at least first and second voltages to derive charges representative of C1-C2 and CREF. In one embodiment the sensing capacitors are operated to charge and discharge during respective first and second phases of first cycles and the reference capacitor is operated to charge and discharge during respective first and second phases of second cycles. In another embodiment, the reference capacitor is operated to charge and discharge during alternate phases of the first and second cycles and the sensing capacitors are operated to charge and discharge during respective first and second phases of all cycles.
Abstract:
A field transmitter for transmitting signals representative of process variables has both a normal operating mode and a diagnostic self-test mode. The field transmitter has a physical sensor for sensing a process variable and generating a physical sensor signal which is representative of the process variable. A signal processing circuit converts the sensor signal to a measurement which is transmitted to a control room. The field transmitter also has a surrogate sensor for producing a surrogate sensor signal which is independent of the process variable. During the diagnostic self-test mode, the surrogate sensor is connected to the signal processing circuit in place of the physical sensor. If the output of the signal processing circuit does not correspond to an expected value, a diagnostic code is produced.
Abstract:
A pair of sensing capacitors, each having a capacitance C1 and C2 respectively, based on a process variable, are coupled to a bridge node which is coupled to a summing node. A reference capacitor, coupled to the summing node, has a capacitance CREF greater than an expected maximum difference between the capacitances of the pair of sensing capacitors. Switches selectively couple the sensing capacitors and the reference capacitor to at least first and second voltages to derive charges representative of C1-C2 and CREF. In one embodiment the sensing capacitors are operated to charge and discharge during respective first and second phases of first cycles and the reference capacitor is operated to charge and discharge during respective first and second phases of second cycles. In another embodiment, the reference capacitor is operated to charge and discharge during alternate phases of the first and second cycles and the sensing capacitors are operated to charge and discharge during respective first and second phases of all cycles.
Abstract:
A pair of sensing capacitors, each having a capacitance C1 and C2 respectively, based on a process variable, are coupled to a bridge node which is coupled to a summing node. A reference capacitor, coupled to the summing node, has a capacitance CREF greater than an expected maximum difference between the capacitances of the pair of sensing capacitors. Switches selectively couple the sensing capacitors and the reference capacitor to at least first and second voltages to derive charges representative of C1-C2 and CREF. In one embodiment the sensing capacitors are operated to charge and discharge during respective first and second phases of first cycles and the reference capacitor is operated to charge and discharge during respective first and second phases of second cycles. In another embodiment, the reference capacitor is operated to charge and discharge during alternate phases of the first and second cycles and the sensing capacitors are operated to charge and discharge during respective first and second phases of all cycles.
Abstract:
A field transmitter for transmitting signals representative of process variables has both a normal operating mode and a diagnostic self-test mode. The field transmitter has a physical sensor for sensing a process variable and generating a physical sensor signal which is representative of the process variable. A signal processing circuit converts the sensor signal to a measurement which is transmitted to a control room. The field transmitter also has a surrogate sensor for producing a surrogate sensor signal which is independent of the process variable. During the diagnostic self-test mode, the surrogate sensor is connected to the signal processing circuit in place of the physical sensor. If the output of the signal processing circuit does not correspond to an expected value, a diagnostic code is produced.
Abstract:
A single plate capacitance sensor includes a sensor capacitor and a reference capacitor that share common plate. A capacitance-to-digital sigma delta modulator provides separate sensor excitation and reference excitation signals to the sensor capacitor and the reference capacitor to provide high resolution detection. Programmable ratio-metric excitation voltages and adaptive excitation voltage sources can be used to enhance modulator performance.
Abstract:
A field transmitter (10) for transmitting signals representative of process variables has both a normal operating mode and a diagnostic self-test mode. The field transmitter (10) has a physical sensor (12,14) for sensing a process variable and generating a physical sensor signal which is representative of the process variable. A signal processing circuit (22,24) converts the sensor signal to a measurement which is transmitted to a control room. The field transmitter (10) also has a surrogate sensor (16,18) for producing a surrogate sensor signal which is independent of the process variable. During the diagnostic self-test mode, the surrogate sensor is connected to the signal processing circuit (22,24) in place of the physical sensor (12,14). If the output of the signal processing circuit (22,24) does not correspond to an expected value, a diagnostic code is produced.
Abstract:
A single plate capacitance sensor includes a sensor capacitor and a reference capacitor that share common plate. A capacitance-to-digital sigma delta modulator provides separate sensor excitation and reference excitation signals to the sensor capacitor and the reference capacitor to provide high resolution detection. Programmable ratio-metric excitation voltages and adaptive excitation voltage sources can be used to enhance modulator performance.
Abstract:
A field transmitter (10) for transmitting signals representative of process variables has both a normal operating mode and a diagnostic self-test mode. The field transmitter (10) has a physical sensor (12,14) for sensing a process variable and generating a physical sensor signal which is representative of the process variable. A signal processing circuit (22,24) converts the sensor signal to a measurement which is transmitted to a control room. The field transmitter (10) also has a surrogate sensor (16,18) for producing a surrogate sensor signal which is independent of the process variable. During the diagnostic self-test mode, the surrogate sensor is connected to the signal processing circuit (22,24) in place of the physical sensor (12,14). If the output of the signal processing circuit (22,24) does not correspond to an expected value, a diagnostic code is produced.