Abstract:
A fixture for use in the bonding of a plurality of chips each to a respective one of a plurality of substrates includes a lower vacuum chuck and a frame member supported on the chuck for reciprocatory motion toward and away from the chuck surface. The chuck surface is arranged to hold substrates with predeposited solder in pockets at predetermined locations thereon. The frame member has openings aligned with those pockets and weights which extend through the openings. After substrates are placed on the chuck surface, the substrates are heated so that the predeposited solder reaches eutectic status, and then chips are placed on the substrates. The frame member is then mounted on the chuck and gradually lowered until the weights press against respective chips, thereby holding the chips in position on the substrates. The entire assembly is then transported to a solder reflow bonding station.
Abstract:
The invention is an optoelectronic device including an optical subassembly enclosed within a plastic housing. The housing includes a wall with an aperture and a lens mounted therein. A plastic receptacle is mounted to the wall. The receptacle includes an opening which is aligned with the lens and which is capable of receiving an optical fiber so that the fiber is aligned with light emitted from the optical assembly. The receptacle is preferably mounted to the wall by means of epoxy.
Abstract:
An apparatus and method for aligning an optical fiber with an optical device having bond pads attached thereto. The apparatus includes a fiber mount assembly having a body portion with an opening provided therein to receive the optical fiber, and two leg portions integrally connecting to and extending from the body portion. Bond pads are also attached to the two leg portions. The apparatus further includes an optical device mount assembly having bond pads attached thereto, and a plurality of eutectic solder bumps provided on the bond pads. The eutectic solder bumps connect the bond pads of the optical device and the two leg portions of the fiber mount assembly to the bond pads of the optical device mount assembly. The concentration of a component of the eutectic material in the solder bumps is increased, via a reaction between the bond pads and the solder bumps, until the eutectic material hardens and rigidly connects the bond pads of the optical device and the two leg portions of the fiber mount assembly to the bond pads of the optical device mount assembly, aligning the optical fiber with the optical device.
Abstract:
In accordance with the invention, a multimode optical fiber communication system is provided with offset illumination by disposing an optical pinhole adjacent an end of the multimode fiber core and offset from the center of the core. The pinhole permits direct offset illumination without the difficulty and expense of a conventional patch-cord assembly.
Abstract:
A fixture for use in the bonding of a plurality of chips each to a respective one of a plurality of substrates includes a lower vacuum chuck and a frame member supported on the chuck for reciprocatory motion toward and away from the chuck surface. The chuck surface is arranged to hold substrates with predeposited solder in pockets at predetermined locations thereon. The frame member has openings aligned with those pockets and weights which extend through the openings. After substrates are placed on the chuck surface, the substrates are heated so that the predeposited solder reaches eutectic status, and then chips are placed on the substrates. The frame member is then mounted on the chuck and gradually lowered until the weights press against respective chips, thereby holding the chips in position on the substrates. The entire assembly is then transported to a solder reflow bonding station.