Abstract:
The present invention relates to a switching mode DC/DC (Direct Current/Direct Current) power converter for delivering a direct current to a pulse radar unit configured to transmit RF pulses with pulse duration. The switching mode power converter comprising: a first switching element configured to connect and disconnect the switching mode power converter from a power source in each cycle of the power converter. An inductor configured to charges and discharges in each cycle of the power conversion.A capacitor configured to maintain a DC output voltage as the inductor charges and discharges in each cycle.A second switching element configured to transfer energy from the inductor to the capacitor when the first switch disconnects the switching mode power converter from the power source. A control loop regulating the voltage with a time constant, to a predetermined value by means of controlling the first switching element. An on time for the first switching element in each cycle is chosen to allow the current through the inductor to fall to zero in each cycle. The cycle is shorter than RF the pulse duration and that the time constant of the control loop is longer than the RF pulses.
Abstract:
The present invention relates to a switching mode DC/DC (Direct Current/Direct Current) power converter for delivering a direct current to a pulse radar unit configured to transmit RF pulses with pulse duration. The switching mode power converter comprising: a first switching element configured to connect and disconnect the switching mode power converter from a power source in each cycle of the power converter. An inductor configured to charges and discharges in each cycle of the power conversion.A capacitor configured to maintain a DC output voltage as the inductor charges and discharges in each cycle.A second switching element configured to transfer energy from the inductor to the capacitor when the first switch disconnects the switching mode power converter from the power source. A control loop regulating the voltage with a time constant, to a predetermined value by means of controlling the first switching element. An on time for the first switching element in each cycle is chosen to allow the current through the inductor to fall to zero in each cycle. The cycle is shorter than RF the pulse duration and that the time constant of the control loop is longer than the RF pulses.