Abstract:
PROBLEM TO BE SOLVED: To provide a method of forming a carrier material composed of alumina hydrate as a base material. SOLUTION: A method of forming the carrier material suited to use in Fischer-Tropsch reactions includes forming a dispersion of first and second hydrated alumina materials in a liquid dispersant, such as an acid solution. The first alumina can be derived from an alkali aluminate, such as is formed in the Bayer reaction. The second hydrated alumina can be derived from high purity aluminum, such as via conversion to an alkoxide. The dispersion is spray dried to form particles which are heat treated to form a carrier material having low levels of impurities. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
A shaped ceramic article, made from an amorphous metal hydroxide having a crystalline microstructure and at least 60 weight percent of the crystalline microstructure is tetragonal, is disclosed. The article's crush strength exceeds 4 kg. A process for making the ceramic article is also described.
Abstract:
Described is a porous ceramic body comprising zirconia having mesopores incorporated therein and the primary crystalline phase is tetragonal. When used as a carrier for a catalyst, the porous ceramic body has excellent crush resistance and a large total pore volume which results in an increase in the carrier's surface area onto which catalytic material may be deposited. Methods of making the carrier are also disclosed.
Abstract:
A method of forming a carrier material suited to use in Fischer-Tropsch reactions includes forming a dispersion of first and second hydrated alumina materials in a liquid dispersant, such as an acid solution. The first alumina can be derived from an alkali aluminate, such as is formed in the Bayer reaction. The second hydrated alumina can be derived from high purity aluminum, such as via conversion to an alkoxide. The dispersion is spray dried to form particles which are heat treated to form a carrier material having low levels of impurities.
Abstract:
A method of forming a carrier material suited to use in Fischer-Tropsch reactions includes forming a dispersion of first and second hydrated alumina materials in a liquid dispersant, such as an acid solution. The first alumina can be derived from an alkali aluminate, such as is formed in the Bayer reaction. The second hydrated alumina can be derived from high purity aluminum, such as via conversion to an alkoxide. The dispersion is spray dried to form particles which are heat treated to form a carrier material having low levels of impurities.
Abstract:
A shaped ceramic article, made from an amorphous metal hydroxide having a crystalline microstructure and at least 60 weight percent of the crystalline microstructure is tetragonal, is disclosed. The article's crush strength exceeds 4 kg. A process for making the ceramic article is also described.
Abstract:
A method of forming a carrier material suited to use in Fischer-Tropsch reactions includes forming a dispersion of first and second hydrated alumina materials in a liquid dispersant, such as an acid solution. The first alumina can be derived from an alkali aluminate, such as is formed in the Bayer reaction. The second hydrated alumina can be derived from high purity aluminum, such as via conversion to an alkoxide. The dispersion is spray dried to form particles which are heat treated to form a carrier material having low levels of impurities.
Abstract:
A method of forming a carrier material suited to use in Fischer-Tropsch reactions includes forming a dispersion of first and second hydrated alumina materials in a liquid dispersant, such as an acid solution. The first alumina can be derived from an alkali aluminate, such as is formed in the Bayer reaction. The second hydrated alumina can be derived from high purity aluminum, such as via conversion to an alkoxide. The dispersion is spray dried to form particles which are heat treated to form a carrier material having low levels of impurities.