Abstract:
A composition includes a) a melt processable polymer including at least one chemical moiety having a partial charge; and b) a nucleating agent having a surface charge that is opposite the partial charge of the chemical moiety of the polymer, wherein the nucleating agent accelerates the rate of crystallization of the melt processable polymer; wherein the nucleating agent has a melting point greater than the melting point of the melt processable polymer. In an embodiment, a method of making the composition is also provided.
Abstract:
A roofing material includes a first layer including a fluoropolymer, a second layer directly bonded to and directly contacting the first layer, and a third layer underlying the second layer. The second layer includes an unfunctionalized olefmic polymer. The third layer includes a polymeric material and a filler.
Abstract:
The invention describes a fluoropolymer laminate that includes a first substrate that can be a modified fluoropolymer having polar functionality and a second substrate. The substrates are laminated at an elevated temperature suitable for lamination to occur and then are subsequently treated with radiation, such as ultraviolet radiation, gamma radiation and/or electron beam.
Abstract:
A composition includes a) a melt processable polymer including at least one chemical moiety having a partial charge; and b) a nucleating agent having a surface charge that is opposite the partial charge of the chemical moiety of the polymer, wherein the nucleating agent accelerates the rate of crystallization of the melt processable polymer; wherein the nucleating agent has a melting point greater than the melting point of the melt processable polymer. In an embodiment, a method of making the composition is also provided.
Abstract:
A novel method of producing an encapsulated light emitting device. A preferred mold release film that can be used during the encapsulation of a LED chip has an elastic modulus and a glass transition temperature that are low enough as compared to the desired molding temperature that the release film will closely conform to the interior of the molding cavities used to form a protective lens surrounding an LED chip. A preferred release film according to embodiments of the present invention comprises a fully fluorinated polymer, such as a perfluoroalkoxy polymer, including MFA, or fluorinated ethylene propylene.
Abstract:
A novel method of producing an encapsulated light emitting device. A preferred mold release film that can be used during the encapsulation of a LED chip has an elastic modulus and a glass transition temperature that are low enough as compared to the desired molding temperature that the release film will closely conform to the interior of the molding cavities used to form a protective lens surrounding an LED chip. A preferred release film according to embodiments of the present invention comprises a fully fluorinated polymer, such as a perfluoroalkoxy polymer, including MFA, or fluorinated ethylene propylene.
Abstract:
A novel method of producing an encapsulated light emitting device. A preferred mold release film that can be used during the encapsulation of a LED chip has an elastic modulus and a glass transition temperature that are low enough as compared to the desired molding temperature that the release film will closely conform to the interior of the molding cavities used to form a protective lens surrounding an LED chip. A preferred release film according to embodiments of the present invention comprises a fully fluorinated polymer, such as a perfluoroalkoxy polymer, including MFA, or fluorinated ethylene propylene.