Abstract:
A magnetic core transceiver antenna for EAS marker detection is provided. The core includes a stack of amorphous alloy ribbons insulated from each other and laminated together. A coil winding of wire, also insulted from the ribbons, and connected to an electronic controller provides the transmitter and receiver modes. The transceiver antenna is optimized for the dual mode operation, and is smaller and uses less power than conventional air-core EAS antennas with equivalent performance. Complex core geometries, such as a sandwiched stack of different sized ribbons, can be implemented to vary the effective permeability of the core to customize antenna performance. Multiple transceiver antennas can be combined to increase the size of the generated EAS interrogation zone.
Abstract:
A method for configuring a pattern recognition system begins by receiving object recognition data from at least one first local image processing system. The object recognition data is stored in at least one global database. Configuration data is determined for a second local image processing system based at least in part upon the received object recognition data from the at least one first image processing system, and then transmitted to the second local image processing system.
Abstract:
PROBLEM TO BE SOLVED: To improve an EAS system in connecting an EAS device installed in the vicinity of an interrogation zone to a monitoring system. SOLUTION: This EAS system is provided with: a first receiver 114 for receiving a response signal at a first frequency from a marker in an interrogation zone 110 for an electronic article monitoring system 100; and a first transmitter 114 connected to the receiver for transmitting the response signal at a second frequency. The first transmitter is equipped with: an amplifier for receiving the response signal as input to output an amplified signal; a local oscillator for supplying an oscillation signal; and a mixer connected to the amplifier and the local oscillator for receiving the amplified signal and the oscillation signal to output a response signal at the second frequency. The EAS system is further provided with a processor connected to the first receiver and the first transmitter for receiving the response signal and certifying the response signal to output a data signal representing the response signal; and the first transmitter transmits the data signal at the second frequency. COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
A system and method for transferring power using a data communications signal line. The data communications signal line is in a high impedance powerless state when idle. A main device is electrically coupled to the data communications signal line. The main device generates and transmits a signal on the data communications signal line. The signal includes power generation and non-power generation characters. A peripheral device is electrically coupled to the data communications signal line. The peripheral device has a functional unit arranged to perform a desired function for the peripheral device. A power conversion module is electrically coupled to the data communications- signal line and receives the signal. The power conversion module converts power from the received signal to a form suitable for storage. A controller is in electrical communication with the functional unit and the power conversion module. The controller receives the power generation and non-power generation characters, strips the power generation characters from the signal and transmits the non-power generation characters to the functional unit.
Abstract:
An electronic article surveillance (EAS) antenna system including at least one transmit antenna and at least one amorphous core receiver antenna adapted for installation on the floor, in the grout region of the floor, or under the flooring of a passageway. An EAS system including at least one perimeter loop antenna adapted to extend around the entire perimeter of a passageway is also provided. The system may further include at least one floor antenna adapted for installation within a region of a floor of a passageway and at least one ceiling antenna adapted for installation adjacent a ceiling of the passageway.
Abstract:
A core antenna system for use in electronic article surveillance (EAS) and radio frequency identification (RFID) systems. The core antenna system may include a core antenna. The core antenna may include a core, a first resonant winding disposed around at least a portion of the core, the first resonant winding having a first number of winding turns Nl, and a second non-resonant winding disposed around at least a portion of the core, the second non-resonant winding having a second number of winding turns N2, the second number of turns greater than or equal to the first number of turns. The core antenna may be mounted on a shield plate and tuned to an operating frequency on the shield plate such that when the shielded core antenna is further mounted on a mounting surface, e.g., of a checkstand, no significant de-tuning of the antenna takes lace.
Abstract:
An electronic article surveillance antenna system with wide interrogation zones has a number of core transceiver antennas with each connectable to a transmitter. The core transceiver antennas are adapted to be installed adjacent a ceiling of the wide interrogation zone and generate an interrogation signal into the wide interrogation zone. The core transceiver antennas each are connectable to a receiver to receive and detect a response signal from an electronic surveillance marker disposed in the wide interrogation zone. The system also has transceiver antenna coils with each connectable to the transmitter and adapted to be installed adjacent a floor of the wide interrogation zone. The transceiver antenna coils generate the interrogation signal into the wide interrogation zone and each is also connectable to the receiver to receive and detect the response signal from the electronic surveillance marker disposed in the wide interrogation zone.
Abstract:
A magnetic core antenna system including a magnetic core and a winding network. The winding network may be configured with a non-uniform ampere-turn distribution to achieve a desired flux density in the core. The network may include a plurality of windings configured to provide a winding impedance facilitating optimal transmitter power delivery to the windings. A magnetic core may be constructed from multiple components having longitudinal contact surfaces and joined by a transverse clamping force. An air gap may be provided between the components to allow relative movement therebetween.