Abstract:
A method for selective metallization of a surface of a polymer article is provided. The polymer article contains a base polymer and at least one metal compound dispersed in the base polymer. The method includes gasifying at least a part of a surface of the polymer article by irradiating the surface with an energy source,and forming at least one metal layer on the surface of the polymer article by chemical plating. The metal compound contains a tin oxide doped with at least one doping element selected from a group including: V,Sb,In,and Mo.
Abstract:
The present disclosure provides a metal compound. The metal compound is represented by a formula(I): Cu 2 A α B 2-α O 4-β . A contains at least one element selected from the groups 6 and 8 of the periodic table. B contains at least one element selected from the group13 of the periodic table, 0
Abstract:
A doped tin oxide contains a tin oxide and an oxide of a doping element. The doping element includes at least one of vanadium and molybdenum. Based on the total amount of the doped tin oxide,the tin oxide is about90-99mol%,and the oxide of the doping element is about1-10mol%. A polymer article containing the doped tin oxide,an ink composition containing the doped tin oxide,and method for preparing them are also provided.In addition,a method for selective metallization of the polymer article and a method for selective metallization of an insulating substrate are provided.
Abstract:
An ink composition, a method of metalizing a surface of an insulation substrate and an article obtainable by the method. The ink composition may comprise a metal compound and an ink vehicle, the metal compound is at least one selected from a group consisting of a compound of formula (I) and a compound of formula (II), ΤiO 2-σ (I), M 1 M 2 p O q (II), 0.05≤σ 1 is at least one element selected from a group consisting of groups 2, 9-12 of the periodic table according to IUPAC nomenclature, M 2 is at least one element selected from a group consisting of groups 3-8, 10 and 13 of the periodic table according to IUPAC nomenclature, and 0
Abstract:
A separator and a method for preparing the separator are provided. The separator includes a polymer substrate,a ceramic layer provided on the polymer substrate and an infiltration part formed between the polymer substrate and the ceramic layer. The polymer substrate contains a base polymer and a first curing resin. The infiltration part has at least a portion infiltrated into the polymer substrate. Each of the infiltration part and the ceramic layer independently contains ceramic particles and a second curing resin.A battery including the separator is also provided.
Abstract:
A method of metalizing a surface of an insulation substrate is provided and an article obtainable by the method is also provided. The method may comprise the steps of: applying an ink composition onto a surface to be metalized of the insulation substrate, obtaining an insulation substrate with an ink layer; subjecting the insulation substrate with an ink layer to heat treatment at a temperature of about 500 to 1000 degree Celsius in an non-reactive atmosphere; plating at least one metal layer on the ink layer, the ink composition comprises a metal compound and an ink vehicle, the metal compound is at least one selected from a group consisting of a nano-copper oxide, a nano- cuprous oxide, a compound of formula (I) and a compound of formula (II), ΤϊO2-σ (I), M 1 M 2 p O q (II), 0.05≤σ≤ 1.8, M 1 is at least one element selected from a group consisting of groups 2, 9-12 of the periodic table according to IUPAC nomenclature, M 2 is at least one element selected from a group consisting of groups 3-8,10 and 13 of the periodic table according to IUPAC nomenclature, 0
Abstract:
A mthod of metalizing a surface of an insulation substrate includes: applying an ink composition onto the surface to form an ink layer; subjecting the insulation substrate to heat treatment at a temperature of about 500 to 1000 degrees Celsius in a non-reactive atmosphere; plating a metal layer on the ink layer. The ink composition comprises a metal compound and an ink vehicle. The metal compound includes at least one selected from a group consisting of a nano-copper oxide, a nano-cuprous oxide, a compound of formula I, and a compound of formula II, TiO2-σ(I), M1M2pOq (II), 0.05≦σ
Abstract:
A mthod of metalizing a surface of an insulation substrate includes: applying an ink composition onto the surface to form an ink layer; subjecting the insulation substrate to heat treatment at a temperature of about 500 to 1000 degrees Celsius in a non-reactive atmosphere; plating a metal layer on the ink layer. The ink composition comprises a metal compound and an ink vehicle. The metal compound includes at least one selected from a group consisting of a nano-copper oxide, a nano-cuprous oxide, a compound of formula I, and a compound of formula II, TiO2-σ(I), M1M2pOq (II), 0.05≦σ
Abstract:
An ink composition is provided, a method of metalizing a surface of an insulation substrate and an article obtainable by the method are also provided. The ink composition may comprise a metal compound and an ink vehicle, the metal compound is at least one selected from a group consisting of a compound of formula I and a compound of formula II, TiO2-σ (I), M1M2pOq (II), 0.05≦σ