Abstract:
Attenuators having phase shift and gain compensation circuits. In some embodiments, a radio-frequency (RF) attenuator circuit can include one or more attenuation blocks arranged in series between an input node and an output node, with each attenuation block including a local bypass path. The RF attenuator circuit can further include a global bypass path implemented between the input node and the output node. The RF attenuator circuit can further include a phase compensation circuit configured to compensate for an off-capacitance effect associated with at least one of the global bypass path and the one or more local bypass paths.
Abstract:
Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths that allow signals in a high gain mode to bypass attenuation. This advantageously reduces or eliminates performance penalties in the high gain mode. The programmable attenuators can be configured to improve linearity of the amplification process through pre-LNA attenuation in targeted gain modes. In addition, described herein are variable gain amplifiers with embedded attenuators in a switching network. The attenuators can be embedded onto switches and can be configured to have little or no effect on a noise factor in a high gain mode because the switching network can provide an attenuation bypass in a high gain mode and an attenuation in other gain modes. The programmable attenuators can be embedded onto a multi-input LNA architecture.
Abstract:
Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using an amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. Individual inputs can be configured to bypass the variable attenuation in a high gain mode.
Abstract:
Disclosed herein are methods for use in operating signal amplifiers that provide impedance adjustments for different gain modes. The impedance adjustments are configured to result in a constant real impedance for an input signal at the amplifier. Some of the disclosed methods adjust impedance using switchable inductors to compensate for changes in impedance with changing gain modes. Some of the disclosed methods adjust a device size to compensate for changes in impedance with changing gain modes. By providing impedance adjustments, the amplifiers reduce losses and improve performance by improving impedance matching over a range of gain modes.
Abstract:
Attenuators for radio-frequency (RF) applications. In some embodiments, an attenuator circuit can include one or more attenuation blocks arranged in series between an input node and an output node, with each attenuation block including a local bypass path. The attenuator circuit can further include a global bypass path implemented between the input node and the output node. The attenuator circuit can further include a phase compensation circuit configured to compensate for an off-capacitance effect associated with at least one of the global bypass path and the one or more local bypass paths.
Abstract:
Variable-phase amplifier circuits and devices. In some embodiments, an amplifier can include a variable-gain stage having a plurality of switchable amplification branches, with each being capable of being activated, such that a combination of one or more activated amplification branches provides respective gain level and phase shift. The plurality of switchable amplification branches can be configured such that the phase shift provided by each combination of one or more activated amplification branches compensates for a phase shift associated with the amplifier operating with the respective gain level of the variable-gain stage.
Abstract:
Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths to provide variable gain for individual amplifier inputs. The variable gain for an individual input is provided using a amplification stage that is common for each input of the amplifier. A variable attenuation is provided for individual inputs through a combination of a band selection switch and an attenuation selection branch. The attenuation can be tailored for individual inputs and can depend on a gain mode of the amplifier.
Abstract:
Binary-weighted attenuator having compensation circuit. In some embodiments, a radio-frequency (RF) attenuator circuit can include a plurality of attenuation blocks arranged in series between an input node and an output node, with each of the plurality of attenuation blocks including a bypass path. The RF attenuator circuit can further include a phase compensation circuit implemented for each of at least some of the attenuation blocks having the respective bypass paths. The phase compensation circuit can be configured to compensate for an off-capacitance effect associated with the corresponding bypass path.
Abstract:
Circuits and methods related to adjustable compensation for parasitic effects in radio-frequency switch networks. In some embodiments, an adjustable compensation circuit for a radio-frequency (RF) circuit can include an inductive circuit that couples a selected node of the RF circuit with a reference node. The inductive circuit can be configured to provide a plurality of inductance values. In some embodiments, the RF circuit can be, for example, a switch network having a plurality of switchable RF signal paths, the reference node can be a ground node, and the selected node can be a common node such as an antenna port.
Abstract:
Architectures and methods related to insertion loss reduction and improved isolation in switch designs. In some embodiments, a switching architecture can include a switch network having one or more switchable radio-frequency (RF) signal paths, where each path contributes to a parasitic effect associated with the switch network. The switching architecture can further include a parasitic compensation circuit coupled to a node of the switch network. The parasitic compensation circuit can be configured to compensate for the parasitic effect of the switch network.