Abstract:
This disclosure relates to a system and method for detecting vehicle events. The system includes sensors configured to generate output signals conveying information related to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals. The system selects a subset of sensors based on the detected vehicle event. The system captures and records information from the selected subset of sensors. The system transfers the recorded information to a remote server or provider.
Abstract:
This disclosure relates to a system and method for detecting vehicle events. Some or all of the system may be installed in a vehicle, operate at the vehicle, and/or be otherwise coupled with a vehicle. The system includes one or more sensors configured to generate output signals conveying information related to the vehicle. The system receives contextual information from a source external to the vehicle. The system detects a vehicle event based on the information conveyed by the output signals from the sensors and the received contextual information.
Abstract:
This disclosure relates to a system configured to detect rail vehicle events. Some or all of the system may be installed in a rail vehicle and/or be otherwise coupled with the rail vehicle. In some implementations, the system may detect rail vehicle events based on pre-determined rail vehicle event criteria sets. The system may include one or more sensors configured to generate output signals conveying information related to the rail vehicle. In some implementations, the system may detect rail vehicle events based on a comparison of the information conveyed by the output signals from the sensors and/or parameters determined based on the output signals to the pre-determined rail vehicle event criteria sets.
Abstract:
This disclosure relates to a system and method for detecting vehicle events and generating review criteria based on the detected vehicle events. Some or all of the system may be installed in a vehicle and/or be otherwise coupled with a vehicle. The system may include one or more sensors configured to generate output signals conveying information related to the vehicle and/or multiple video capture devices configured to acquire visual output information representing a vehicle environment. In some implementations, the system may determine a vehicle event type based on the information conveyed by the output signals. The system may generate review criteria, which correspond to the vehicle event, based on the vehicle event type and the fields of view corresponding to the video capture devices.
Abstract:
This disclosure relates to a system that determines driving performance by a vehicle operator for simulated driving of a simulated vehicle in a simulation engine. Individual vehicle event scenarios correspond to vehicle events. Individual simulation scenarios correspond to individual vehicle event scenarios. A vehicle operator, e.g. , an autonomous driving algorithm, operates the simulated vehicle in the simulation engine for a set of simulation scenarios. One or more metrics quantify the performance of the vehicle operator based on simulated results.
Abstract:
This disclosure relates to a system and method for transitioning vehicle control between autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to the vehicle and its operation. During autonomous vehicle operation, the system gauges the level of responsiveness of a vehicle operator through challenges and corresponding responses. The system determines when to present a challenge to the vehicle operator based on internal and external factors. If necessary, the system will transition from an autonomous operation mode to a manual operation mode.
Abstract:
This disclosure relates to a distributed data center that includes resources carried by a fleet of vehicles. The system includes sensors configured to generate output signals conveying information related to the vehicles. The system may detect vehicle events based on the information conveyed by the output signals. The system includes a remote computing server configured to present a user interface to a user. Through the user interface, the user may query information from one or more vehicles in the fleet. The distributed query is transmitted to individual vehicles, and results are locally processed in accordance with response constraints and subsequently transmitted back to the remote computing server for presentation to the user.
Abstract:
This disclosure relates to a system and method for determining vehicle operator preparedness for vehicles that support both autonomous operation and manual operation. The system includes sensors configured to generate output signals conveying information related to vehicles and their operation. During autonomous vehicle operation, the system gauges the level of responsiveness of an individual vehicle operator through challenges and corresponding responses. Based on the level of responsiveness, a preparedness metric is determined for each vehicle operator individually.
Abstract:
This disclosure relates to a system configured to generate synchronized electronic vehicle event records. The synchronized vehicle event records may include vehicle operation information, video information, and/or other information. The synchronized electronic vehicle event records may be generated remotely (e.g., "in the cloud") from a vehicle. The system is configured to communicate with factory installed and/or other (e.g., third party) vehicle systems to generate the vehicle event information and/or cause other information relevant to a particular vehicle event to be transmitted in addition to the vehicle event information. By communicating with existing vehicle systems and causing these systems to transmit information related to vehicle events themselves, and generating the synchronized electronic vehicle event records remotely from a vehicle the system reduces the amount and/or cost of aftermarket equipment that must be installed in a vehicle for vehicle event monitoring.
Abstract:
This disclosure relates to a system configured to identify geolocations in a rail network where rail vehicle events are likely to occur. In some implementations, the system may include one or more of a processor, a computing system, electronic storage, external resources, and/or other components. The system may be configured to illustrate the geolocations in the rail network where rail vehicle events are likely to occur on a map of the rail network, predict geolocations in the rail network where rail vehicle events will likely occur, generate coaching information based on the identified geolocations, and/or perform other actions.