Tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite and application thereof in exhaust gas treatment

    公开(公告)号:US11224866B2

    公开(公告)日:2022-01-18

    申请号:US16859920

    申请日:2020-04-27

    Abstract: The invention discloses a visible light responsive tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite and an application thereof in exhaust gas treatment. The preparation method of the composite comprises the following steps: with urea as a precursor, carrying out twice calcination to obtain carbon nitride nanosheet; dispersing the carbon nitride nanosheet into methanol, sequentially adding cobalt nitrate hexahydrate and 2-methylimidazole, and carrying out a reaction to obtain a carbon nitride nanosheet composite; and calcining the carbon nitride nanosheet composite in an air atmosphere at a low temperature to obtain the tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite. The in-situ growth synthesis method can ensure that the tricobalt tetraoxide obtained by follow-up calcination is uniformly coated on the carbon nitride nanosheet to improve the catalytic performance; the low temperature calcination ensures that the carbon nitride can maintain its wrinkle state and chemical structure during the calcination process.

    Honeycomb-like homo-type heterojunction carbon nitride composite material and preparation method thereof, and application in catalytic treatment of waste gas

    公开(公告)号:US11174164B2

    公开(公告)日:2021-11-16

    申请号:US16396611

    申请日:2019-04-26

    Abstract: Disclosed are a honeycomb-like homo-type heterojunction carbon nitride composite material and a preparation method thereof, and an application of the honeycomb-like homo-type heterojunction carbon nitride composite material in catalytic treatment of waste gas. The preparation method includes the following steps: with two different carbon nitride precursors namely urea and thiourea as raw materials, weighing certain amounts of the urea and the thiourea, adding the urea and the thiourea into a crucible, adding a certain amount of ultrapure water, placing the crucible in a muffle furnace, and carrying out calcination molding. The honeycomb-like homo-type heterojunction carbon nitride prepared by the one-step method has good photocatalytic effect to catalytic degradation of NO; meanwhile, the honeycomb-like homo-type heterojunction carbon nitride composite material has the advantages of rich and easily-available production raw materials, good stability, reusability, etc., and has application prospects in the field of treatment of NO in the air.

Patent Agency Ranking