Abstract:
A power conversion circuit uses smaller, cheaper, and faster analog and digital circuits, e.g., buffers, comparators, and processing circuits, to provide the information necessary to control a multilevel power converter faster, cheaper, and with a smaller footprint than conventional techniques. For example, a current detection circuit indirectly measures a direction of a current through an inductor connected between midpoint node and an output node of a multilevel power converter based on comparisons between voltages associated with the multilevel power converter. A capacitor voltage detection detects a capacitor voltage across the flying capacitor to generate a logic signal based on a comparison between the capacitor voltage and a first reference voltage. A control circuit selects an operating state of the multilevel power converter to regulate a first capacitor voltage across the first capacitor based on the indirectly measured direction of the inductor current, the logic signal, and an input command signal.
Abstract:
A power conversion circuit uses smaller, cheaper, and faster analog and digital circuits, e.g., buffers, comparators, and processing circuits, to provide the information necessary to control a multilevel power converter faster, cheaper, and with a smaller footprint than conventional techniques. For example, a current detection circuit indirectly measures a direction of a current through an inductor connected between midpoint node and an output node of a multilevel power converter based on comparisons between voltages associated with the multilevel power converter. A capacitor voltage detection detects a capacitor voltage across the flying capacitor to generate a logic signal based on a comparison between the capacitor voltage and a first reference voltage. A control circuit selects an operating state of the multilevel power converter to regulate a first capacitor voltage across the first capacitor based on the indirectly measured direction of the inductor current, the logic signal, and an input command signal.
Abstract:
A DC-DC converter has a Step-Up stage connected to a Step-Down stage. A common Step-Down controller is designed and configured such that a single reference voltage is compared to the output voltage of the Step-Down stage by a single comparator, producing a single error signal. The error signal is then compared to two different saw signals to generate first and second pulse-width modulated signals respectively. The first and second pulse-width modulated signals are inputted to a control unit that generates a first pair of control signals and a second pair of control signals, which control switching of the Step-Up stage and of the Step-Down stage.
Abstract:
A multi-mode, dynamic, DC-DC converter supplies a dynamically varying voltage, as required, from a battery to an RF power amplifier (PA). In envelope tracking mode, a fast DC-DC converter generates a dynamic voltage that varies based on the amplitude envelope of an RF signal, and regulates the voltage at the PA. A slow DC-DC converter generates a steady voltage and regulates the voltage across a link capacitor. The fast and slow converters are in parallel from the view of the PA, and the link capacitor is between the fast converter and the PA. Because different nodes are regulated, no current sharing is possible between the converters. The link capacitor boosts the dynamic voltage level, allowing a maximum dynamic voltage at the load to exceed the battery voltage. In power level tracking mode, the fast converter is disabled and the link capacitor is configured to be in parallel with the load. The slow converter directly regulates the PA, and the link capacitor is in parallel with (added to) an output capacitor. Multiple wireless network standards may be supported, allowing for the sharing of RF circuits.
Abstract:
There is described a DC-DC converter having a Step-Up stage (10) supplying a Step-Down stage (20). A common Step-Down controller is designed and configured such that a single reference voltage (VREF) is compared to the output voltage (VOUT_SD) of the Step-Down stage by a single comparator (61), producing a single error signal (VERROR). The error signal is then compared by comparators (62) and (63) to the two different saw signals (SAW1) and (SAW2) respectively in order to generate first and second pulse-width modulated signals (PWM_SU) and (PWW_SD) respectively that are inputted a the control unit (65) of the controller which, in turn, generates a first pair of control signals (1,2) and a second pair of control signals (3,4), which control switching of the Step-Up stage (10) supplying a Step-Down stage (20).
Abstract:
A multi-mode, dynamic, DC-DC converter supplies a dynamically varying voltage, as required, from a battery to an RF power amplifier (PA). In envelope tracking mode, a fast DC-DC converter generates a dynamic voltage that varies based on the amplitude envelope of an RF signal, and regulates the voltage at the PA. A slow DC-DC converter generates a steady voltage and regulates the voltage across a link capacitor. The fast and slow converters are in parallel from the view of the PA, and the link capacitor is between the fast converter and the PA. Because different nodes are regulated, no current sharing is possible between the converters. The link capacitor boosts the dynamic voltage level, allowing a maximum dynamic voltage at the load to exceed the battery voltage. In power level tracking mode, the fast converter is disabled and the link capacitor is configured to be in parallel with the load. The slow converter directly regulates the PA, and the link capacitor is in parallel with (added to) an output capacitor. Multiple wireless network standards may be supported, allowing for the sharing of RF circuits.