Abstract:
Novel catalytic materials and novel methods of preparing M-N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Abstract:
A sacrificial support-based method, a mechanosynthesis-based method, and a combined sacrificial support/mechanosynthesis support based method that enables the production of supported or unsupported catalytic materials and/or the synthesis of catalytic materials from both soluble and insoluble transition metal and charge transfer salt materials.
Abstract:
Novel catalytic materials and novel methods of preparing M-N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Abstract:
A method of preparing M-N—C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Abstract:
A sacrificial support-based method, a mechanosynthesis-based method, and a combined sacrificial support/mechanosynthesis support based method that enables the production of supported or unsupported catalytic materials and/or the synthesis of catalytic materials from both soluble and insoluble transition metal and charge transfer salt materials.
Abstract:
A method of preparing M-N-C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Abstract:
A variety of inorganic-organic hybrid materials and various methods for preparing and using the same are described. The hybrid materials are graphene or graphitic materials populated with organic molecules and may have a variety of surface defects, pits or three- dimensional architecture, thereby increasing the surface area of the material. The hybrid materials may take the form of three dimensional graphene nanosheets (3D GNS). If the organic molecules are enantiospecific molecules, the hybrid materials can be used for chiral separation of racemic mixtures.
Abstract:
A sacrificial support-based method, a mechanosynthesis-based method, and a combined sacrificial support/mechanosynthesis support based method that enables the production of supported or unsupported catalytic materials and/or the synthesis of catalytic materials from both soluble and insoluble transition metal and charge transfer salt materials.
Abstract:
Novel non-planar non-contigous graphene structures and novel methods for forming the same. According to some embodiments the novel methods result in three-dimensional graphene structures. According to a further embodiment these three-dimensional graphene structures have a specific, controlled morphology. According to a still further method the novel method results in decoratable graphene sheets or three-dimensional graphene structures.
Abstract:
A biofuel cell comprising an anode and cathode wherein biocatalytic enzymes are purposefully oriented at each side of the fuel cell so as to increase and/or optimize the enzymes' performance in catalysis and/or electron transfer.