Abstract:
Novel catalytic materials and novel methods of preparing M-N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Abstract:
A method of preparation of M-N-C catalytic material utilizing a sacrificial support approach and using inexpensive and readily available metal precursors and carbendazim (CBDZ) as the carbon source is described.
Abstract:
A sacrificial support-based method, a mechanosynthesis-based method, and a combined sacrificial support/mechanosynthesis support based method that enables the production of supported or unsupported catalytic materials and/or the synthesis of catalytic materials from both soluble and insoluble transition metal and charge transfer salt materials.
Abstract:
Novel catalytic materials and novel methods of preparing M-N—C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.
Abstract:
A method of preparing M-N—C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Abstract:
Methods for optimizing, designing, making, and assembling various component parts and layers to produce optimized MEAs. Optimization is generally achieved by producing multi-layered MEAs wherein characteristics such as catalyst composition and morphology, ionomer concentration, and hydrophobicity/hydophilicity are specifically tuned in each layer. The MEAs are optimized for use with a variety of catalysts including catalysts with specifically designed and controlled morphology, chemical speciation on the bulk, chemical speciation on the surface, and/or specific hydrophobic or hydrophilic or other characteristics. The catalyst can incorporate non-platinum group metal (non-PGM) and/or platinum group metal (PGM) materials.
Abstract:
A sacrificial support-based method, a mechanosynthesis-based method, and a combined sacrificial support/mechanosynthesis support based method that enables the production of supported or unsupported catalytic materials and/or the synthesis of catalytic materials from both soluble and insoluble transition metal and charge transfer salt materials.
Abstract:
A method of preparing M-N-C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include non-porphyrin precursors with no initial catalytic activity. Examples of suitable non-catalytic non-porphyrin precursors include, but are not necessarily limited to low molecular weight precursors that form complexes with iron such as 4-aminoantipirine, phenylenediamine, hydroxysuccinimide, ethanolamine, and the like.
Abstract:
Novel non-planar non-contigous graphene structures and novel methods for forming the same. According to some embodiments the novel methods result in three-dimensional graphene structures. According to a further embodiment these three-dimensional graphene structures have a specific, controlled morphology. According to a still further method the novel method results in decoratable graphene sheets or three-dimensional graphene structures.
Abstract:
Novel catalytic materials and novel methods of preparing M-N-C catalytic materials utilizing a sacrificial support approach and using inexpensive active polymers as the carbon and nitrogen source and readily available metal precursors are described.