Abstract:
Method and device for the detection of Co in a hydrogen-rich gas stream. Such a gas stream is, for example, fed to a fuel cell. Detection takes place with the aid of a miniature electrochemical cell and is based on the principle that carbon monoxide that moves past the anode screens the anode material, as a result of which the reaction with hydrogen at the anode is impeded. By determining the decrease in the current density it is possible to determine the degree of screening as a function of time and thus the percentage CO. According to the invention the gas is fed past the anode only and the cathode is in direct contact with a water bath.
Abstract:
In a method and device for the detection of CO in a hydrogen-rich gas stream, detection takes place with the aid of a miniature electrochemical cell and is based on the principle that carbon monoxide that moves past the anode screens the anode material, as a result of which the reaction with hydrogen at the anode is impeded. By determining the decrease in the current density it is possible to determine the degree of screening as a function of time and thus the percentage CO. According to the invention the gas is fed past the anode only and the cathode is in direct contact with a water bath.
Abstract:
In a method and device for the detection of CO in a hydrogen-rich gas stream, detection takes place with the aid of a miniature electrochemical cell and is based on the principle that carbon monoxide that moves past the anode screens the anode material, as a result of which the reaction with hydrogen at the anode is impeded. By determining the decrease in the current density it is possible to determine the degree of screening as a function of time and thus the percentage CO. According to the invention the gas is fed past the anode only and the cathode is in direct contact with a water bath.