Abstract:
A system and method is disclosed for providing a redistribution metal layer in an integrated circuit. The redistribution metal layer is formed from the last metal layer in the integrated circuit during manufacture of the integrated circuit before final passivation is applied. The last metal layer provides sites for solder bump pads used in flip chip interconnection. The redistribution metal layer can be (1) a flat layer deposited over the next to last metal layer through an opening in a dielectric layer, or (2) deposited over an array of vias connected to the next to last metal layer. Space between the solder bump pads is deposited with narrower traces for connecting active circuit areas below. A final passivation layer is deposited to ensure product reliability.
Abstract:
A structure and method for dissipating charges comprising an underlying dielectric layer disposed over capacitor plates of sensor circuitry a gap being formed conformally between adjacent plates and a topographic discharge grid over the underlying dielectric layer and wherein the topographic discharge grid fills at least a portion of the gap between the plates over the dielectric layer and diffuses electrostatic charges at the surface of the integrated circuit.
Abstract:
A structure and method is disclosed for grounding an electrostatic discharge device of an integrated circuit to dissipate electrostatic charges comprising an underlying dielectric layer disposed over capacitor plates of sensor circuitry and a conductive layer disposed over the underlying dielectric layer, wherein the conductive layer diffuses electrostatic charges at the surface of the integrated circuit to ground. The conductive material not only dissipates electrostatic charges to the ground, but may also protect at least a portion of the edge of the sensor chip from mechanical stress.
Abstract:
In capacitive sensor circuits where physical contact is required and excess pressure may be inadvertently applied to the sensor surface, aluminum is not sufficiently hard to provide "scratch" protection and may delaminate, causing circuit failure, even if passivation integrity remains intact. Because hard passivation layers alone provide insufficient scratch resistance, at least the capacitive electrodes and preferably all metallization levels within the sensor circuit in the region of the capacitive electrodes between the surface and the active regions of the substrate are formed of a conductive material having a hardness greater than that of aluminum. The selected conductive material is employed for each metallization level between the surface and the active regions, including contacts and vias, landing pads, interconnects, capacitive electrodes, and electrostatic discharge protection lines.
Abstract:
Fast and efficient photodiodes with different structures are fabricated using CMOS process technology by adapting transistor structures to form the diode structures. The anode regions of the photodiodes correspond to either PLDD regions of PMOS transistors or P-wells of NMOS transistors to provide two different photodiode structures with different anode region depths and thus different drift region thicknesses. An antireflective film used on the silicon surface of the photodiodes is employed as a silicide-blocking mask at other locations of the device.
Abstract:
A fingerprint detector having a smooth sensing surface for contact with a fingerprint includes capacitive sensor plates defining an array of sensor cells below the sensing surface and tungsten ESD protection grid lines surrounding each sensor cell. The sensing surface is defined by an alumina layer with the tungsten grid lines embedded therein. The alumina layer provides a sensing surface with improved scratch resistance. The resulting detector is more sensitive in its capacitive sensing due to the relatively high dielectric constant of the alumina layer.
Abstract:
A structure and method for creating a contact between a conductive layer and a pad for dissipating electrostatic charges comprising the steps of, forming a pad and a composite insulating layer between and over conductive plates on a substrate, wherein the insulating layer isolates and protects the conductive plates and pad from damage, the insulating layer comprising a dielectric region underlying a conductive layer. A passivation layer is formed over at least a portion of the conductive layer and a photoresist is patterned over at least a portion of the passivation. An opening is etched through the passivation and the insulating layers, wherein the photoresist and the conductive layer serve as masks. Finally, a conductive material is deposited in the opening to form an electrical contact between the pad and the conductive layer.
Abstract:
A structure and method for dissipating charges comprising an underlying dielectric layer disposed over capacitor plates of sensor circuitry a gap being formed conformally between adjacent plates and a topographic discharge grid over the underlying dielectric layer and wherein the topographic discharge grid fills at least a portion of the gap between the plates over the dielectric layer and diffuses electrostatic charges at the surface of the integrated circuit.
Abstract:
A structure and method for creating a contact between a conductive layer and a pad for dissipating electrostatic charges comprising the steps of, forming a pad and a composite insulating layer between and over conductive plates on a substrate, wherein the insulating layer isolates and protects the conductive plates and pad from damage, the insulating layer comprising a dielectric region underlying a conductive layer. A passivation layer is formed over at least a portion of the conductive layer and a photoresist is patterned over at least a portion of the passivation. An opening is etched through the passivation and the insulating layers, wherein the photoresist and the conductive layer serve as masks. Finally, a conductive material is deposited in the opening to form an electrical contact between the pad and the conductive layer.
Abstract:
Sensor cells are arranged in an array in an organic semiconductor layer. Row and column select circuitry addresses the cells of the array one cell at a time to determine the presence of an object, such as a fingerprint ridge or valley, contacting or proximate to a sensing surface above each cell. Control circuitry can be provided in a companion silicon chip or in a second layer of organic semiconductor material to communicate with the array and an associated system processor. The array of sensor cells can be fabricated using a flexible polymer substrate that is peeled off and disposed of after contacts have been patterned on the organic semiconductor layer. The organic semiconductor layer can be used with a superimposed reactive interface layer to detect specific chemical substances in a test medium.