Abstract:
The present invention relates to the demultiplexing of a digital data stream in a receiver so as to retain only those parts of the digital data stream required by the receiver. Such demultiplexing is particularly useful when applied to a receiver circuit in a television system having a digital set-top-box. A memory in the receiver stores packet identifiers of data packets required by the receiver, which are stored in the memory under the control of a first control circuit. A second control circuit extracts packet identifiers from incoming data packets in an input digital data stream. A third control circuit receives the extracted packet identifier and determines whether this matches one of the packet identifiers stored in the memory. A match signal is set by the third control circuit to the second control circuit responsive to a match. The second control circuit demultiplexes the input data packet responsive to the match signal.
Abstract:
There is disclosed a method and circuit for allowing access to a shared memory by at least two controllers having different bus widths. Such method and circuit provides particular advantages in its application to controlling access to a shared memory in a digital set-top-box of a digital television receiver. An arbiter is provided to access between memory accesses by first and second memory access circuitry. The first memory access circuitry accesses a block of data in the shared memory, and the second memory access circuitry accesses two blocks of data in each memory access. Each second memory write access comprises reading blocks of data from first and second memory locations and then writing blocks of data to first and second memory locations.
Abstract:
A memory interface is disclosed for accessing a plurality in memory regions. The interface includes a register which stores a number of memory request signals received from a processor or the like. The memory interface includes circuitry for detecting which memory region each memory request refers to and also which page within that memory region is required to be accessed. Using the information contained in the register, the memory interface is able to determine which page within a memory region will be required to be accessed after the currently open page is closed. The memory interface can detect this information a number of memory requests in advance. Thus the memory interface is able to provide the necessary control instructions to initiate the opening of the subsequently required page within a memory region so that when the memory request requiring access to this page is serviced, there is no delay in opening the page. The memory interface is arranged so that a page within a first memory region can be opened while a page within a second memory is being actually accessed.