Abstract:
An integrated circuit comprises a serial data input pin and a serial data output pin, on-chip functional circuitry and test logic, a test access port controller connected to effect communication of serial data across the chip boundary via said input and output pins, the test access port controller being connectable to the test logic in a first mode of operation to effect communication of serial test data off-chip, a data adaptor which is connectable to the input and output pins via the test access port controller in a second mode of operation, wherein the data adaptor comprises a first interface for communicating data in the form of serial bits to and from said test access port controller under the control of a first clock signal and a second interface for communicating data in the form of successive sets of parallel data and control signals to and from said on-chip functional circuitry under the control of a second clock signal generated independently of said first clock signal, and wherein said data adaptor comprises data storage means for holding data received in the data adaptor to take into account differences between the first and second clock signals.
Abstract:
There is disclosed a single chip integrated circuit device including on-chip functional circuitry and a plurality of diagnostic units connected to monitor the on-chip functional circuitry. The plurality of diagnostic units detect respective trigger conditions by comparing signals from the on-chip functional circuitry with data held in respective diagnostic registers of the diagnostic units. The single chip integrated circuit device further includes trigger sequence control circuitry arranged to receive the trigger conditions and to initiate a trigger message when a predetermined sequence of the trigger conditions is detected. There is also disclosed a method of controlling such trigger sequences.
Abstract:
There is disclosed a test access port controller for effecting communications across a chip boundary having a test mode and a diagnostic mode of operation, wherein in the test mode of operation the test data is resultant data from a test operation having an expected and time delayed relationship, and in the diagnostic mode of operation diagnostic data is conveyed both on and off chip in the form of respective independent input and output serial bit streams simultaneously through the test access port controller.
Abstract:
An integrated circuit comprises a serial data input pin and a serial data output pin, on-chip functional circuitry comprising at least two processing cores, a data adaptor which is in communication with the processing cores by respective communication channels and is connectable to the input and output pins, wherein the data adaptor comprises transmit circuitry including means for receiving parallel data and control signals from said on-chip functional circuitry and means for converting said parallel data and control signals into a sequence of serial bits including flow control bits, data bits and channel identification bits which identify the communication channel on which said parallel data and control signals were received and receive circuitry including means for receiving from off-chip via the serial data input pin a sequence of serial bits including flow control bits, data bits and channel identification bits, means for converting said sequence into parallel data and control signals for said on-chip functional circuitry and means for transmitting said parallel data and control signals on the communication channel identified by said channel identification bits.