Abstract:
The present invention relates to a receiver for use in an OFDM type transmission system, in which data is transmitted in frames. Each frame has a cyclic prefix which is a repetition of part of the frame. Control means are provided and the control means controls a sampling oscilator. The control means include estimation means for estimating timing deviations of the sampling clock. The estimation means operates entirely on frequency domain input data.
Abstract:
The invention relates to a multi-carrier transmission system, particularly a DMT system, in which data is transmitted between two transceivers using a plurality of carriers, the frequency bandwidth of the system being divided between said plurality of carriers, the transmission system being adapted for operation in a heterogeneous network including a number of subscriber equipments having different channel characteristics and coexisting on the same cable, the length of cable for each subscriber terminal varying in dependence on their respective locations. In accordance with the invention the transmission system includes allocation means for allocating the traffic of subscriber equipments having a shorter length of cable to tones starting from a higher frequency band of said system bandwidth.
Abstract:
The invention relates to a new type of VDSL-modems where the VDSL-modem is divided into on one hand an analog part which is placed in the optical node, and on the other a digital part which is placed in the local station. The analog part of the VDSL-modem consists of A/D-converter and D/A-converter, filter, amplifier, hybrid/balun, adaptive noise attenuator, optical interface and possibly echo canceller. The digital part of the modem consists of an FFT/IFFT-processor, a synchronizer, an equalizer, an interleaving unit, an error correction unit, a protocol manager, and an optical interface. The invention simplifies i.a. synchronization of the modems and reduces the power consumption in the optical node. The multiplexor function in the optical node in addition will be simpler because it need not manage a protocol.
Abstract:
With OFDM systems the frequency domain data is the Fourier transform of the received time domain OFDM frames. The time domain frames must be sampled, at the receiver, in synchronism with the transmitter, so that each received frame contains data from only a single transmitted frame. It is vital for this synchronism to be maintained in order to maintain the orthogonality of the frames. A typical multi-carrier system, of the OFDM type, which uses a cyclic prefix permits orthogonality to be maintained when there is a small deviation from exact frame synchronisation. Because the signalling interval includes both an entire frame and the cyclic prefix, which is a repetition of part of the frame, a frame sampled within the signalling interval will contain data from only one frame. Since the signalling interval is greater than the frame period, this gives some leeway in frame alignment. The present invention provides a mechanism for achieving frame synchronisation, in the frequency domain, by utilising this fact. The first step in synchronising a receiver with a transmitter, on signal acquisition, is to determine the interval in which orthogonality exists. Once this has been achieved an argument function is calculated from the received frame. This argument function can then be used to improve the synchronisation. The present invention is particularly suitable for use in ADSL and VDSL modems which can be used to give broadband access over copper networks. The invention is also of relevance to broadband transmission in mobile and semi-mobile systems for transmission over the radio channels.