Abstract:
Method for growing carbon nanotubes having a determined chirality, comprising the steps of fragmentation of at least one initial carbon nanotube (30) having a determined chirality with obtainment of at least two portions, or seeds, of carbon nanotube, each one having one free growth end (32); supply of atoms of carbon (33) with autocatalyst addition of the atoms of carbon (33) at the free end (32) of each portion of nanotube (30) to determine an elongation, or growth, of the nanotube (30).
Abstract:
The invention relates to a semiconductor device for electro-optic applications of the type including at least a rare-earth ions doped P/N junction integrated on a semiconductor substrate. This device may be used to obtain laser action in Silicon and comprises a cavity or a waveguide and a coherent light source obtained incorporating the rare-earth ions, and specifically Erbium ions, in the depletion layer of said P/N junction. The junction may be for instance the base-collector region of a bipolar transistor and is reverse biased.
Abstract:
The invention relates to a semiconductor device for electro-optic applications of the type including at least a rare-earth ions doped P/N junction integrated on a semiconductor substrate. This device may be used to obtain laser action in Silicon and comprises a cavity or a waveguide and a coherent light source obtained incorporating the rare-earth ions, and specifically Erbium ions, in the depletion layer of said P/N junction. The junction may be for instance the base-collector region of a bipolar transistor and is reverse biased.
Abstract:
The invention relates to a semiconductor device for electro-optic applications of the type including at least a rare-earth ions doped P/N junction integrated on a semiconductor substrate. This device may be used to obtain laser action in Silicon and comprises a cavity or a waveguide and a coherent light source obtained incorporating the rare-earth ions, and specifically Erbium ions, in the depletion layer of said P/N junction. The junction may be for instance the base-collector region of a bipolar transistor and is reverse biased.