Abstract:
In an input device (30), a control element (32) is operated by a user; a pressure sensor (1) is mechanically coupled to the control element (32) and is provided with a monolithic body (2) of semiconductor material housing a first sensitive element (4), which detects an actuation of the control element (32); a supporting element (34) is connected to the pressure sensor (1); and connection elements (38) electrically connect the monolithic body (2) to the supporting element (34) without interposition of a package. In particular, the monolithic body (2) has electrical-contact areas (6) carried by one main surface (2a) thereof, and the printed circuit board (34) has conductive regions (37) carried by a main face (34) thereof; the connection elements (38) are conductive bumps and electrically connect the electrical-contact areas (6) to the conductive regions (37).
Abstract:
A manufacturing process of a semiconductor piezoresistive accelerometer (35) includes the steps of: providing a wafer (11) of semiconductor material; providing a membrane (23) in the wafer (11) over a cavity (22); rigidly coupling an inertial mass (25) to the membrane (23); and providing, in the wafer (11), piezoresistive transduction elements (24), that are sensitive to strains of the membrane (23) and generate corresponding electrical signals. The step of coupling is carried out by forming the inertial mass (25) on top of a surface of the membrane (23) opposite to the cavity (22). The accelerometer (35) is advantageously used in a device for monitoring the pressure (30) of a tyre of a vehicle. The cavity may be formed as a buried cavity. The mass may be formed by silk-screen printing of a metal paste.
Abstract:
A manufacturing process of a semiconductor pressure-monitoring device (30) is disclosed, envisaging: providing a wafer (31) of semiconductor material; providing, in a first region (34a) of the wafer (31) a first buried cavity (22) and a first membrane (23), suspended over, and closing at the top, the first buried cavity (22); providing, in a second region (34b) of the wafer (31), a second buried cavity (40) and a second membrane (41), suspended over, and closing at the top, the second buried cavity (40); coupling an inertial mass (25) in a rigid way to the first membrane (23), by forming the inertial mass (25) on top of a surface of the first membrane (23) opposite to the first buried cavity (22); providing, in the first membrane (23), first piezoresistive transduction elements (24) sensitive to strains of the first membrane (23) due to movements of the inertial mass (25) in response to a sensed acceleration and generating corresponding electrical signals, so as to provide an acceleration sensor (35); and providing, in the second membrane (41), second piezoresistive transduction elements (42) sensitive to strains of the second membrane (41) in response to a sensed pressure and generating corresponding electrical signals, so as to provide a pressure sensor (36) integrated with the acceleration sensor (35) in the wafer (31). A semiconductor pressure-monitoring device (30) is also disclosed, made with the above manufacturing process.
Abstract:
A manufacturing process of a semiconductor piezoresistive accelerometer (35) includes the steps of: providing a wafer (11) of semiconductor material; providing a membrane (23) in the wafer (11) over a cavity (22); rigidly coupling an inertial mass (25) to the membrane (23); and providing, in the wafer (11), piezoresistive transduction elements (24), that are sensitive to strains of the membrane (23) and generate corresponding electrical signals. The step of coupling is carried out by forming the inertial mass (25) on top of a surface of the membrane (23) opposite to the cavity (22). The accelerometer (35) is advantageously used in a device for monitoring the pressure (30) of a tyre of a vehicle. The cavity may be formed as a buried cavity. The mass may be formed by silk-screen printing of a metal paste.
Abstract:
A manufacturing process of a combined semiconductor accelerometer and pressure-monitoring device (30) is disclosed, envisaging: providing a wafer (31) of semiconductor material; providing, in a first region (34a) of the wafer (31) a first buried cavity (22) and a first membrane (23), suspended over, and closing at the top, the first buried cavity (22); providing, in a second region (34b) of the wafer (31), a second buried cavity (40) and a second membrane (41), suspended over, and closing at the top, the second buried cavity (40); coupling an inertial mass (25) in a rigid way to the first membrane (23), by forming the inertial mass (25) on top of a surface of the first membrane (23) opposite to the first buried cavity (22); providing, in the first membrane (23), first piezoresistive transduction elements (24) sensitive to strains of the first membrane (23) due to movements of the inertial mass (25) in response to a sensed acceleration and generating corresponding electrical signals, so as to provide an acceleration sensor (35); and providing, in the second membrane (41), second piezoresistive transduction elements (42) sensitive to strains of the second membrane (41) in response to a sensed pressure and generating corresponding electrical signals, so as to provide a pressure sensor (36) integrated with the acceleration sensor (35) in the wafer (31). A combined semiconductor accelerometer and pressure-monitoring device (30) is also disclosed, made with the above manufacturing process.