Abstract:
A fluidic cartridge (35; 135) for detecting chemicals, formed by a casing (40; 140), hermetically housing an integrated device (20) having a plurality of detecting regions (22) to bind with target chemicals; part of a supporting element (41; 141), bearing the integrated device; a reaction chamber (65; 165), facing the detecting regions (22); a sample feeding hole (50, 51; 150) and a washing feeding hole (52; 152), self-sealingly closed; fluidic paths (63, 64, 70, 71; 163, 164, 170, 171), which connect the sample feeding and washing feeding holes (50-52; 150, 152) to the reaction chamber (65; 165); and a waste reservoir (80; 180), which may be fluidically connected to the reaction chamber by valve elements (82, 76; 182, 176) that may be controlled from outside. The integrated device is moreover connected to an interface unit (42) carried by the supporting element (41; 141), electrically connected to the integrated device and including at least one signal processing stage and external contact regions (75; 175).
Abstract:
The microreactor has a body (21) of semiconductor material; a channel (25) extending in the body (21) and having walls (25a); a coating layer (34) of insulating material coating the walls (25a) of the channel (25); a diaphragm (26) extending on top of the body (21) and upwardly closing the channel. The diaphragm (26) is formed by a semiconductor layer (28) completely encircling mask portions (22) of insulating material.
Abstract:
The optical two-dimensional position sensor (1) comprises a selective optical unit (9) which faces, and is displaceable relative to an integrated device (2). The selective optical unit (9) is formed by a polarised light source (4,5) and a filter with four quadrants (3) which permits passage of the light onto two quadrants only. The selective optical unit (9) is attached to a control lever (6) such as to translate in a plane along a first direction (X) and a second direction (Y), and to pivot around a third direction (W) which is orthogonal to the preceding directions. In a transparent package, the integrated device (2) comprises a first group of sensor elements (10 1 -10 3 ) which are spaced along the first direction (X), a second group of sensor elements (10 4 -10 7 ) which are spaced along the second direction (Y) and a third group of sensor elements (10 8 -10 9 ) which detect the angular position of the selective optical sensor. Electronics which is integrated with the sensor elements generates a code which is associated with each position which is assumed by the selective optical unit (9) and a control signal (S) which corresponds to the function required.
Abstract:
The cartridge-like chemical sensor (140) is formed by a housing (150) having a base (151) and a cover (152) fixed to the base and provided with an input opening (159), an output hole (169) and a channel (165) for a gas to be analyzed. The channel extends in the cover between the input opening and the output hole and faces a printed circuit board (153) carrying an integrated circuit (20) having a sensitive region (16) open toward the channel (165) and of a material capable to bind with target chemicals in the gas to be analyzed. A fan (170) is arranged in the housing, downstream of the integrated device (20), for sucking the gas after being analyzed, and is part of a thermal control system for the integrated circuit.
Abstract:
A manufacturing process of a semiconductor pressure-monitoring device (30) is disclosed, envisaging: providing a wafer (31) of semiconductor material; providing, in a first region (34a) of the wafer (31) a first buried cavity (22) and a first membrane (23), suspended over, and closing at the top, the first buried cavity (22); providing, in a second region (34b) of the wafer (31), a second buried cavity (40) and a second membrane (41), suspended over, and closing at the top, the second buried cavity (40); coupling an inertial mass (25) in a rigid way to the first membrane (23), by forming the inertial mass (25) on top of a surface of the first membrane (23) opposite to the first buried cavity (22); providing, in the first membrane (23), first piezoresistive transduction elements (24) sensitive to strains of the first membrane (23) due to movements of the inertial mass (25) in response to a sensed acceleration and generating corresponding electrical signals, so as to provide an acceleration sensor (35); and providing, in the second membrane (41), second piezoresistive transduction elements (42) sensitive to strains of the second membrane (41) in response to a sensed pressure and generating corresponding electrical signals, so as to provide a pressure sensor (36) integrated with the acceleration sensor (35) in the wafer (31). A semiconductor pressure-monitoring device (30) is also disclosed, made with the above manufacturing process.
Abstract:
In a process for manufacturing a SOI wafer, the following steps are envisaged: forming, in a monolithic body (20) of semiconductor material having a front face (20a), a buried cavity (27), which extends at a distance from the front face (20a) and delimits, with the front face (20a), a surface region (28) of the monolithic body (20), the surface region (28) being surrounded by a bulk region (21) and forming a flexible membrane suspended above the buried cavity (27); forming, through the monolithic body (20), at least one access passage (30; 40), which reaches the buried cavity (27); and filling the buried cavity (27) uniformly with an insulating region (35, 36). The surface region (28) is continuous and formed by a single portion of semiconductor material, and the buried cavity (27) is contained and completely insulated within the monolithic body (20); the step of forming at least one access passage (30; 40) is performed after the step of forming a buried cavity (27).
Abstract:
A manufacturing process of a semiconductor piezoresistive accelerometer (35) includes the steps of: providing a wafer (11) of semiconductor material; providing a membrane (23) in the wafer (11) over a cavity (22); rigidly coupling an inertial mass (25) to the membrane (23); and providing, in the wafer (11), piezoresistive transduction elements (24), that are sensitive to strains of the membrane (23) and generate corresponding electrical signals. The step of coupling is carried out by forming the inertial mass (25) on top of a surface of the membrane (23) opposite to the cavity (22). The accelerometer (35) is advantageously used in a device for monitoring the pressure (30) of a tyre of a vehicle. The cavity may be formed as a buried cavity. The mass may be formed by silk-screen printing of a metal paste.