Abstract:
A process wherein an insulating region (13) is formed in a body at least around an array portion (51) of a semiconductor body (10); a gate region (16) of semiconductor material is formed on top of a circuitry portion (51) of the semiconductor body (10); a first silicide protection mask (52) is formed on top of the array portion; the gate region (16) and the active areas (43) of the circuitry portion (51) are silicided and the first silicide protection mask (52) is removed. The first silicide protection mask (52) is of polysilicon and is formed simultaneously with the gate region (16). A second silicide protection mask (53) of dielectric material covering the first silicide protection mask (52) is formed before silicidation of the gate region (16). The second silicide protection mask (53) is formed simultaneously with spacers (41) formed laterally to the gate region (16).
Abstract:
The phase change memory cell (5) is formed by a resistive element (22) and by a memory region (38) of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction (Y) ; and the memory region (38) has a second thin portion (38a) having a second sublithographic dimension in a second direction (X) transverse to the first dimension. The first thin portion (22) and the second thin portion (38a) are in direct electrical contact and define a contact area (58) of sublithographic extension. The second thin portion (38a) is delimited laterally by oxide spacer portions (55a) surrounded by a mold layer (49) which defines a lithographic opening (51). The spacer portions (55a) are formed after forming the lithographic opening, by a spacer formation technique.
Abstract:
A process wherein an insulating region (13) is formed in a body at least around an array portion (51) of a semiconductor body (10); a gate region (16) of semiconductor material is formed on top of a circuitry portion (51) of the semiconductor body (10); a first silicide protection mask (52) is formed on top of the array portion; the gate region (16) and the active areas (43) of the circuitry portion (51) are silicided and the first silicide protection mask (52) is removed. The first silicide protection mask (52) is of polysilicon and is formed simultaneously with the gate region (16). A second silicide protection mask (53) of dielectric material covering the first silicide protection mask (52) is formed before silicidation of the gate region (16). The second silicide protection mask (53) is formed simultaneously with spacers (41) formed laterally to the gate region (16).
Abstract:
The phase change memory cell (5) is formed by a resistive element (22) and by a memory region (38) of a phase change material. The resistive element has a first thin portion having a first sublithographic dimension in a first direction (Y) ; and the memory region (38) has a second thin portion (38a) having a second sublithographic dimension in a second direction (X) transverse to the first dimension. The first thin portion (22) and the second thin portion (38a) are in direct electrical contact and define a contact area (58) of sublithographic extension. The second thin portion (38a) is delimited laterally by oxide spacer portions (55a) surrounded by a mold layer (49) which defines a lithographic opening (51). The spacer portions (55a) are formed after forming the lithographic opening, by a spacer formation technique.