Abstract:
A method for the production of highly refined or microfibrillated cellulose (MFC), comprising the steps of treating cellulosic fibres to remove at least a major part of the primary wall of the fibres, drying the treated fibres, rewetting the treated fibres, and disintegrating the wetted fibres by mechanical means to obtain the final product. Dried cellulosic pulp is produced as an intermediate product of the method, having an average fibre length of at least 0.4 mm, while less than 50% of the primary wall material of natural untreated fibres is left in the intermediate product. Instead of transporting large amounts of dilute MFC dispersion the invention enables transport of the dry intermediate product to the MFC end user, who would complete the process by turning the intermediate product to final MFC by use of standard disintegrating devices.
Abstract:
The present invention relates to a method for manufacturing cellulose carbamate which method comprises the following steps: providing a never-dried pulp, adding urea and mixing said pulp with said urea, mechanically treating said mixture, drying the mixture, and heating the relatively dry mixture thus providing a cellulose carbamate. The present invention also relates to a cellulose carbamate obtainable by said method, use of said cellulose carbamate and a dope comprising said cellulose carbamate.
Abstract:
The invention relates to a process for treating cellulose fibres which process comprises the steps of providing a slurry comprising cellulose fibers, adding anionic polyacrylamide (A-PAM) with high molar mass to the slurry in a first step and subjecting the slurry comprising fibers and A-PAM to a mechanical treatment in a second step thereby forming a composition comprising microfibrillated cellulose. The invention further relates to a composition produced according to the process.
Abstract:
The invention relates to a method of producing oxidized or microfibrillated cellulose (MFC). According to the invention there is provided an aqueous pulp suspension with a consistency of at least 15%, and at least one oxidant is added to the suspension to oxidize cellulosic hydroxyl groups in the suspension under mechanical mixing or shearing. The oxidized suspension, washed and diluted to a lower consistency, is subjected to homogenization to yield gel-like MFC. Alkali hypochlorite may be used as oxidant, and preferred mediating oxidation catalysts are AZADO and TEMPO. Alkali bromide may be used as a cocatalyst. The MFC product, which as a suspension has an increased viscosity, is suitable as a means of regulating viscosity or for production of films and composites.
Abstract:
A method for drying nanofibrillated polysaccharide to obtain a substantially dry nanofibrillated polysaccharide product, comprising the following steps: (i) providing an aqueous suspension of nanofibrillated polysaccharide; (ii) increasing the solid content of said suspension, thereby forming a high solid content microfibrillated cellulose suspension; and (iii) drying said high solid content microfibrillated cellulose suspension, through a simultaneous heating and mixing operation.
Abstract:
A method for the production of a composite material comprising nanofibrillated polysaccharide, the method comprising the following steps: (i) providing a liquid suspension of the nanofibrillated polysaccharide; (ii) bringing said liquid suspension in contact with at least one additive, thereby forming a composite material suspension, wherein the composite comprises the nanofibrillated polysaccharide and the at least one additive, (iii) increasing the solid contents of said composite material suspension, thereby forming a high solid contents composite material suspension.
Abstract:
The present invention provides a method for production of cellulose ethers in a high solids process substantially without use of organic solvents as reaction and/or washing medium. In the method of the invention the first alkalization step is carried out by using high solids content cellulose pulp and solid sodium hydroxide. This is followed by an etherification step where the solids content is preferably further increased and the use of solid etherification reactant is preferred. As no organic solvents are used as reaction media the invented method enables production of cellulose ethers directly from never dried pulp with significant savings in energy and investment costs. The method is especially suitable for the production of carboxymethyl cellulose sodium salt (CMC) with low degree of substitution (DS
Abstract:
The invention relates to a method of producing oxidized or microfibrillated cellulose (MFC). According to the invention there is provided an aqueous pulp suspension with a consistency of at least 15 %, and at least one oxidant is added to the suspension to oxidize cellulosic hydroxyl groups in the suspension under mechanical mixing or shearing. The oxidized suspension, washed and diluted to a lower consistency, is subjected to homogenization to yield gel-like MFC. Alkali hypochlorite may be used as oxidant, and preferred mediating oxidation catalysts are AZADO and TEMPO. Alkali bromide may be used as a cocatalyst. The MFC product, which as a suspension has an increased viscosity, is suitable as a means of regulating viscosity or for production of films and composites.
Abstract:
The present invention provides a method for production of cellulose ethers in a high solids process substantially without use of organic solvents as reaction and/or washing medium. In the method of the invention the first alkalization step is carried out by using high solids content cellulose pulp and solid sodium hydroxide. This is followed by an etherification step where the solids content is preferably further increased and the use of solid etherification reactant is preferred. As no organic solvents are used as reaction media the invented method enables production of cellulose ethers directly from never dried pulp with significant savings in energy and investment costs. The method is especially suitable for the production of carboxymethyl cellulose sodium salt (CMC) with low degree of substitution (DS