Abstract:
Prior power converters have utilized discrete components mounted on circuit boards of different design. Failure of one or more of the components requires the components to be separately tested to determine which is faulty. The faulty component or the board containing same must then be replaced. This results in significant down time for the inverter and can require stocking of a large number of specialized boards. In order to overcome these problems, an inverter (22) is assembled using a series of circuit boards (80, 82, 84) of standardized type. Each circuit board includes separate layers (101, 102-136, RS1+, 280, 290, 292) which interconnect components mounted thereon together with a heat exchanger (102) which cools high power components. When a malfunction of a component occurs, the entire board may be replaced so that inverter down time is minimized. Also, the use of standardized boards reduces stocking requirements and inventory costs.
Abstract:
Previous electronic circuit assemblies have exhibited unnecessarily high parasitic inductance. In order to overcome this problem, an apparatus in accordance with this invention is provided with a transistor (24) having power terminals, and first and second diodes (28, 29). The apparatus comprises a first bus (20a) connected to the first diode (28) and one of the power terminals, and a second bus (16a) connected to the second diode (29), the first and second buses (20a, 16a) comprising parallel plates having substantially the same configuration.
Abstract:
Prior electrically compensated constant speed drives (ECCSD's) (10) have included a single power transmission path between a prime mover (12) and a load (14) driven thereby which handles large amounts of control power, thereby leading to inefficiencies and complexity in the controls for the drive. In order to overcome this problem, an ECCSD (10) according to the present invention includes a pair of power transmission paths (16, 18) between the prime mover (12) and a load (14) wherein each power transmission path includes a mechanical differential (20, 40) having a first input (N2, N3) coupled to the output (N1) of the prime mover (12) and an output (N4) coupled to the load. A second input (30, 50) of each of the differentials (20, 40) is coupled to a permanent magnet machine (PMM1, PMM2) and a power converter (70) interconnects the electrical power windings of the permanent magnet machines (PMM1, PMM2). In operation, one of the permanent magnet machines (PMM1) is always operated as a generator while the other permanent magnet (PMM2) is operated as a motor so that power flow through the power converter (70) is unidirectional. The ECCSD (10) of the present invention results in a substantial reduction in the maximum control power and hence efficiency is increased and complexity is reduced.
Abstract:
This invention relates to an electric power generation and distribution system, and more particularly to an electric power distribution module for use in such systems, having an insulative support structure (22') which includes integral therewith electrically conductive buses (72a, b, c) and straps (74) which define a circuit for distributing electric power received from one or more power sources (200, 202 or 204) to one or more loads, the insulative support structure (22') also including integral therewith current sensors (88) for sensing a flow of electrical current in the electrically conductive buses (72a, b, c) and straps (74).
Abstract:
The problem of compensating for dimensional differences occurring in the length of adjacent stacks of semiconductors or other electronic components in an electrical assembly of such components is avoided through the use of a plurality of housing sections (12, 14, 16), one for each stack with each housing section being comprised of stacked thin sheets (20) of electrically conductive or electrically insulating material. Some of the sheets have cutouts (42, 142) to receive semiconductors (120, 150). The stacks are tied together by ribbon-like flexible tabs (18) integral with at least some of the sheets (20) and interconnecting the housing sections (12, 14, and 16). The tabs (18) are constructed to be deformable generally independently of the other of the tabs.
Abstract:
A semiconductor package including a first electrically conductive bus and a second electrically conductive bus spaced from and generally surrounding the first bus in approximately concentric relation thereto. A plurality of generally equally angularly spaced semiconductors are located in the space between the buses and each semiconductor has at least two electrodes. One electrode of each semiconductor is connected to the first bus and the other electrode is connected to the second bus.
Abstract:
A semiconductor package including a cubicle heat sink core (10). A pair of heat sink caps (12, 14), each having a concave surface (40) defined by three mutually perpendicular faces (42, 44, 46) are provided. The caps (12, 14) substantially encapsulate the core (10) while being spaced therefrom with each of the faces (42, 44, 46) being generally parallel to a corresponding side (26, 28, 30) of the core (10). Semiconductors (16) are sandwiched between each side (26, 28, 30) of the core and the associated parallel face (42, 44, 46) springs (90) bias the cap (12, 14) towards each other and towards the core (10) to provide the requisite thermal and electrical contact pressure.
Abstract:
Un ensemble semi-conducteur comprend un premier bus conducteur d'électricité et un deuxième bus conducteur d'électricité écarté du premier bus et l'entourant généralement en relation approximativement concentrique. Une pluralité de semi-conducteurs espacés les uns des autres d'un angle généralement égal est située dans l'espace entre les deux bus, et chaque semi-conducteur comprend au moins deux électrodes. Un électrode sur chaque semi-conducteur est connectée au premier bus, l'autre électrode étant connectée au deuxième bus.
Abstract:
Les entraînements à vitesse constante compensés électriquement (ECCSD) (10) de l'art antérieur comprennent un seul chemin de transmission de puissance motrice entre un moteur (12) et une charge (14) entraînée, ce chemin véhiculant de grandes quantités de puissance de commande, ce qui est à l'origine des performances médiocres et de la complexité des commandes de l'entraînement. Afin de résoudre ce problème, l'ECCSD (10) ci-décrit comprend une paire de chemins de transmission de puissance (16, 18) entre le moteur (12) et une charge (14), et chaque chemin de transmission comprend un différentiel mécanique (20, 40) possédant une première entrée (N2, N3) couplée à la sortie (N1) du moteur (12) et une sortie (N4) couplée à la charge. Une deuxième entrée (30, 50) de chacun des différentiels (20, 40) est couplée à une machine à aimant permanent (PMM1, PMM2) et un convertisseur de puissance (70) relie les enroulements de puissance électrique des machines à aimant permanent (PMM1, PMM2). Pendant le fonctionnement, une des machines à aimant permanent (PMM1) est toujours utilisée comme générateur alors que l'autre machine à aimant permanent (PMM2) est utilisée comme moteur, de sorte que la puissance s'écoulant du convertisseur (70) est unidirectionnelle. L'ECSD (10) ci-décrit permet de réduire considérablement la puissance de commande maximum et donc d'accroître le rendement et de réduire la complexité.
Abstract:
Module de semiconducteurs comportant un noyau en forme de cube servant de puits de chaleur (10). Deux capuchons à puits de chaleur (12, 14), dont chacun possède une surface concave (40) constituées par trois faces mutuellement perpendiculaires (42, 44, 46), sont également prévus. Les capuchons (12, 14) constituent essentiellement une capsule entourant le noyau (10), dont ils sont séparés de manière que chacune des faces (42, 44, 46) soit généralement parallèle au côté correspondant (26, 28, 30) du noyau (10). Des semiconducteurs (16) sont intercalés entre chaque côté (26, 28, 30) du noyau et les ressorts (9) de la face parallèle associée (42, 44, 46) dirigent les capuchons (12, 14) l'un vers l'autre et vers le noyau (10) pour fournir la pression nécessaire pour le contact thermique et électrique.