Abstract:
Provided are a silicon/oxide/nitride/oxide/silicon (SONOS) memory, a fabricating method thereof, and a memory programming method. The SONOS memory includes a substrate; a first insulating layer stacked on the substrate; a semiconductor layer, which is patterned on the first insulating layer in a predetermined shape, including source and drain electrodes separated by a predetermined interval; a second insulating layer located on the semiconductor layer between the source and drain electrodes; a memory layer, which is deposited on sides of a portion of the semiconductor layer between the source and drain electrodes and on sides and an upper surface of the second insulating layer, including electron transferring channels and an electron storing layer; and a gate electrode, which is deposited on a surface of the memory layer, for controlling transfer of electrons in the memory layer. The programming method may provide a large capacity, stable, multi-level memory.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.
Abstract:
A nonvolatile semiconductor memory device includes a semiconductor substrate having a source region and a drain region, and a gate stack formed on the semiconductor substrate between and in contact with the source and drain regions. The gate stack includes, in sequential order from the substrate: a tunneling film; a first trapping material film doped with a first predetermined impurity, the first trapping material film having a higher dielectric constant than the nitride film (Si3N4); a first insulating film having a higher dielectric constant than a nitride film; and a gate electrode. Such a nonvolatile semiconductor memory device can effectively control the trap density according to the doping concentration, thereby increasing the write/erase speed of data at a low operating voltage.
Abstract translation:非易失性半导体存储器件包括具有源极区和漏极区的半导体衬底,以及形成在半导体衬底上并与源极和漏极区接触的栅堆叠。 栅极堆叠从衬底依次顺序包括:隧道膜; 掺杂有第一预定杂质的第一捕获材料膜,所述第一捕获材料膜具有比所述氮化物膜(Si 3 N 4)更高的介电常数; 具有比氮化膜更高的介电常数的第一绝缘膜; 和栅电极。 这种非易失性半导体存储器件可以根据掺杂浓度有效地控制阱密度,从而在低工作电压下增加数据的写入/擦除速度。
Abstract:
In a silicon-oxide-nitride-oxide-silicon (SONOS) memory device and a method of manufacturing the same, a SONOS memory device includes a semiconductor substrate, an insulating layer deposited on the semiconductor substrate, an active layer formed on a predetermined region of the insulating layer and divided into a source region, a drain region, and a channel region, a first side gate stack formed at a first side of the channel region, and a second side gate stack formed at a second side of the channel region opposite the first side of the channel region. In the SONOS memory device, at least two bits of data may be stored in each SONOS memory device, thereby allowing the integration density of the semiconductor memory device to be increased without increasing an area thereof.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.