Abstract:
A universal fixture for holding printed circuit board assemblies during stencil printing, pick-and-place processing, and other PCB assembly processes. In one embodiment, a universal printed circuit board holder has a base and a plurality of support members movably attached to the base. The support members may project away from the base along support paths, and the support members are selectively positionable along the support paths when the support members engage a side of a printed circuit board assembly. Accordingly, the support members may be selectively positioned at heights corresponding to a topography of the side of the printed circuit board assembly to uniformly support the printed circuit board assembly.
Abstract:
An apparatus for calibrating surface mounting processes in the manufacturing of printed circuit board assemblies. In one embodiment of the invention, a test pad of adhesive is deposited onto a substrate, and then a test module is mounted to the substrate at the test pad. The test module is representative of an electrical component that is to be mounted to a printed circuit board, and the test module is mounted to the substrate in a manner in which the electrical component is to be mounted to a printed circuit board. After the test module is mounted to the substrate, the profile of the test pad is detected through the substrate and/or the test module to determine whether the test pad contacts enough of the test module to sufficiently adhere the test module to the substrate without interfering with the terminals of the test module. Accordingly, this embodiment of the invention provides an indication or estimate of the desired volume of an adhesive pad to mount a specific component to a PCB.
Abstract:
A fixture tooling for supporting a back side of a printed circuit board during component placement on a top side of the board includes an inflatable air bladder that is sized substantially coextensive with the circuit board. The bladder is positioned below the circuit board within a containment unit adapted for use with conventional railed assembly equipment. The bladder is selectively inflated for supporting the complete back side of the printed circuit board during assembly operations. The bladder provides evenly distributed support across, substantially, the entire circuit board without damaging any components on the back side by pliably conforming to component irregularities on the back side.
Abstract:
A method and apparatus for calibrating surface mounting processes in the manufacturing of printed circuit board assemblies. In one embodiment of a method in accordance with the invention, a test pad of adhesive is deposited onto a substrate, and then a test module is mounted to the substrate at the test pad. The test module is representative of an electrical component that is to be mounted to a printed circuit board, and the test module is mounted to the substrate in a manner in which the electrical component is to be mounted to a printed circuit board. After the test module is mounted to the substrate, the profile of the test pad is detected through the substrate and/or the test module to determine whether the test pad contacts enough of the test module to sufficiently adhere the test module to the substrate without interfering with the terminals of the test module. Accordingly, this embodiment of the inventive method provides an indication or estimate of the desired volume of an adhesive pad to mount a specific component to a PCB.
Abstract:
A fixture tooling for supporting a back side of a printed circuit board during component placement on a top side of the board includes an inflatable air bladder that is sized substantially coextensive with the circuit board. The bladder is positioned below the circuit board within a containment unit adapted for use with conventional railed assembly equipment. The bladder is selectively inflated for supporting the complete back side of the printed circuit board during assembly operations. The bladder provides evenly distributed support across, substantially, the entire circuit board without damaging any components on the back side by pliably conforming to component irregularities on the back side.