Abstract:
PROBLEM TO BE SOLVED: To provide a method for starting a direct smelting method, with which iron is produced from metal-containing supplied material in a metallurgical type vessel having plural raw material spouting lances/tuyeres. SOLUTION: This method is executed with the following steps, i.e., (a) the vessel is preheated and (b) the molten iron in a vessel 77 is supplied to form the molten material. Further, (c) carboneceous material and flux are supplied into the molten material and oxygen-containing gas is spouted through the lances/tuyeres 11 and gas generated from the carbon, and the molten material is burnt to heat the molten material and slag is produced. Furthermore, (d) while continuing the supply of the carboneceous material and the flux and the spouting of the oxygen-containing gas, the metal-containing material is supplied into the vessel and the metal-containing material is smelted to produce the molten iron.
Abstract:
PROBLEM TO BE SOLVED: To minimize the loss of melting matter and solid matter accompanying exhaust gas, by providing an exhaust gas duct, which extends from a refining container, with the first section which has a relatively slight upward inclination to the horizontal, and the second section which extends with a relatively slight gradient to the horizontal, in order. SOLUTION: A refining container for directly refining iron ore has a sidewall 5 which forms a roughly cylindrical barrel including an upper barrel section 51 and a lower barrel section 53, upward from the side 56 of a hearth, and is provided with an extended exhaust gas duct 9 outward from its upper section. Moreover, it has a front furnace 57 and a tap hole 61 for discharging the molten metal continuously. In this case, the exhaust gas duct 9 is provided with the first section 31 which inclines upward at an angle α of about, for example, 7 deg. to the horizontal from an inlet end 63, and the second section 33 with a steep gradient which extends vertically from the other end of the first section 31. As a result, this container minimizes the loss of the molten matter and the solid matter which are discharged together with the exhaust gas.
Abstract:
A vessel which produces metal from a metalliferous feed material by a direct smelting process is disclosed. The vessel contains a molten bath having a metal layer (15) and a slag layer (16) on the metal layer and has a gas continuous space (31) above the slag layer. The vessel includes a hearth formed of refractory material having a base (3) and sides (55) in contact with the molten metal and side walls (5) which extend upwardly from the sides (55) of the hearth and are in contact with the slag layer and the gas continuous space. The side walls that contact the gas continuous space include water cooled panels (57) and a layer of slag on the panels. The vessel also includes one or more than one lance/tuyere (13) extending downwardly into the vessel and injecting an oxygen-containing gas into the vessel above the metal layer and a plurality of lances/tuyeres (11) injecting at least part of the metalliferous feed material and a carbonaceous material with a carrier gas into the molten bath so as to penetrate the metal layer.
Abstract:
A direct smelting process for producing iron and/or ferroalloys is disclosed. The process operates on a commercial scale in a metallurgical vessel that has a hearth, side walls, and a roof, and a minimum width dimension of the interior of the hearth of at least 4 meters. The process is a molten bath-based process and includes supplying ferruginous material, carbonaceous material, and fluxes into the vessel and smelting ferruginous feed material to molten metal in the molten bath and generating gases in the bath. The process also includes injecting jets of oxygen-containing gas being air or air with up to 50% oxygen through 3 or more lances into a space above the quiescent surface of the molten bath (the "top space") and combusting gases generated in the process and generating upward movement of molten material from the molten bath into the top space to facilitate heat transfer to the bath and to minimise heat loss from the vessel. The process is characterised by entraining a volume of top space gas into the jets of oxygen-containing gas injected into the vessel that is 2-6 times the volume of the injected gas.
Abstract:
A process for producing metals from a metalliferous feed material in an electric furnace is disclosed. The process includes the steps of forming a molten bath having a metal layer and a slag layer on the metal layer in the furnace and supplying electrical energy to the furnace and converting the electrical energy to thermal energy and thereby contributing to the heat input requirements of the process. The process also includes injecting a carrier gas and a solid carbonaceous material into the molten bath via one or more than one solids injection lance/tuyere and causing molten material to be projected from the molten bath as splashes, droplets, and streams into a space above a nominal quiescent surface of the molten bath and forming a transition zone. The process also includes injecting an oxygen-containing gas into the furnace via one or more than one oxygen-containing gas injection lance/tuyere and post-combusting reaction gases released from the molten bath and thereby further contributing to the heat requirements of the process. In this process the ascending and thereafter descending splashes, droplets, and streams of molten material in the transition zone facilitate heat transfer to the molten bath and the transition zone minimises heat loss from the furnace via the side walls in contact with the transition zone.
Abstract:
A method of producing iron from iron carbide is disclosed. Solid iron carbide is injected into a molten bath comprising molten iron and slag and dissolves in the molten bath. An oxygen-containing gas is injected into a gas space above the surface of the molten bath to cause combustion of at least a portion of combustible material in the gas space. In addition splashes and/or droplets of molten iron and/or slag are ejected upwardly from the molten bath into the gas space above the quiescent bath surface to form a transition zone. The transition zone is a region in which heat generated by combustion of combustible material is transferred to the splashes and/or droplets of molten iron and/or slag and thereafter is transferred to the molten bath when the splashes and/or droplets of molten iron and/or slag return to the molten bath.
Abstract:
A lance (5) for injecting a feed material, preferably a solid feed material, into a metallurgical vessel, is disclosed. The lance comprises: an inlet (21) for introducing the feed material into the lance; an outlet (23) at a forward end of the lance (5) for discharging the feed material from the lance (5); a hollow elongate member (25) that defines a passageway (33) for the feed material between the inlet (21) and the outlet (23) and is adapted to be cooled by a first cooling fluid; and an outer jacket (35) positioned around a section of the length of the member (25) and is adapted to be cooled by a second cooling fluid.
Abstract:
Postup najíždení procesu prímého tavení pro výrobu železa z kovonosného vsázkového materiálu v metalurgické nádobe typu opatreného množstvím prívodních trubic nebo dmyšen (11, 13) pro zavádení vsázkového materiálu zahrnuje kroky : a) predehrev nádoby; b) zavedení vsázky roztaveného železa do nádoby a vytvorení lázne taveniny v nádobe; c) zavádení uhlíkatého materiálu a tavidla do lázne taveniny a zavádení plynu obsahujícího kyslík prostrednictvím jedné nebo více než jedné prívodní trubice nebo dmyšny pro zavádení vsázkového materiálu, a spalování uhlíku a plynu vznikajícího z lázne, je-li prítomen, pro ohrívání roztavené lázne a vytvárí strusky; a d) zavádení kovonosného vsázkového materiálu do nádoby, za stálého zavádení pevného uhlíkatého materiálu a tavidla a pokracování zavádení plynu obsahujícího kyslík, a tavení kovonosného vsázkového materiálu za vzniku roztaveného železa, címž je dokoncen postup najíždení.
Abstract:
A direct smelting process for producing iron and/or ferroalloys is disclosed. The process operates on a commercial scale in a metallurgical vessel that has a hearth, side walls, and a roof, and a minimum width dimension of the interior of the hearth of at least 4 meters. The process is a molten bath-based process and includes supplying ferruginous material, carbonaceous material, and fluxes into the vessel and smelting ferruginous feed material to molten metal in the molten bath and generating gases in the bath. The process also includes injecting jets of oxygen-containing gas being air or air with up to 50% oxygen through 3 or more lances into a space above the quiescent surface of the molten bath (the "top space") and combusting gases generated in the process and generating upward movement of molten material from the molten bath into the top space to facilitate heat transfer to the bath and to minimise heat loss from the vessel. The process is characterised by entraining a volume of top space gas into the jets of oxygen-containing gas injected into the vessel that is 2-6 times the volume of the injected gas.
Abstract:
Procedimiento para la puesta en marcha de un proceso de fusión directa para producir hierro a partir de un material metalífero de carga en una cuba metalúrgica, comprendiendo la cuba una pluralidad de lanzas/toberas de inyección del material de carga, comprendiendo el procedimiento de puesta en marcha las etapas siguientes: (a) precalentar la cuba mediante la combustión de gas combustible y de aire en la cuba; (b) suministrar una carga de hierro fundido a la cuba y formar un baño fundido en la cuba; (c) suministrar material carbonoso y fundente al baño fundido e inyectar de un gas que contiene oxígeno a través de una o varias lanzas/toberas de inyección de material de carga y realizar la combustión del carbono y del gas derivado del baño, y calentar de esta manera el baño fundido, generar escoria y empezar a establecer una zona de transición y aumentar la presión en la cuba; y (d) cuando las condiciones predeterminadas, que comprenden cualquiera o varias de entre: temperatura del baño fundido de por lo menos 1.400ºC, concentración de carbono de por lo menos 4% en peso en el baño fundido, y niveles de poscombustión inferiores al nivel que indica la saturación del carbono del baño fundido, alcanzan un umbral predeterminado, suministrar el material metalífero de carga a la cuba mientras prosigue el suministro de material carbonoso y de fundente y la inyección de gas que contiene oxígeno y fundir material metalífero de carga y producir hierro fundido adicional.