Abstract:
New and improved methodology and apparatus for non-invasive biophysical diagnosis are disclosed and comprise the ensonification of body parts with multi-frequency energy pulses in predetermined timed sequence, the detection of the resultant echo pulses, the processing of the latter to provide signals indicative of the impedance of the body part, the referencing of said signals to the biophysical cycle of the body part, and the real time display of said signals in the form of an impedance profile of said body part.
Abstract:
Method and apparatus are provided for the determination of the Raylographic information of a body part which is ensonified by acoustical energy pulses by a particularly precisely focused acoustical focusing system to produce acoustical energy echo pulses which are detected in coherent manner. Fourier transformation of the pulses from the time to the frequency domain enables frequency domain deconvolution to provide the impulse response with minimization of mathematical instabilities and distortion of the frequency domain impulse response. Noise extraction and spatial deconvolution filtering are included to respectively maximize signal to noise ratio and minimize distortive effects of body part surface non-orthogonality and combine with the above to provide for particular stability in the overall results and attendant increase in the axial resolution of Raylographic display and in the overall resolution of body part image displays.
Abstract:
Method and apparatus are provided for processing the successive echo pulses which result from the interrogation of a layered material by energy pulses, and include the direct provision from said echo pulses of the uncompensated coherent echo response of said material to thereby preserve phase information, the provision of the compensated impulse response of said material by modification of said echo response with a non-linear correction function, and the calculation of the RAYLOGRAM of said material from said impulse response. All of the above is accomplished in the complete absence of deconvolution, and said non-linear correction function includes a normalization factor to normalize the impulse response and provision for modifying the latter to compensate for energy pulse attenuation in the material to render it more accurate by satisfying the known boundary conditions of said layered material.
Abstract:
Method and apparatus are provided for processing the successive echo pulses which result from the interrogation of a layered material by energy pulses, and include the direct provision from said echo pulses of the uncompensated coherent echo response of said material to thereby preserve phase information, the provision of the compensated impulse response of said material by modification of said echo response with a non-linear correction function, and the calculation of the RAYLOGRAM of said material from said impulse response. All of the above is accomplished in the complete absence of deconvolution, and said non-linear correction function includes a normalization factor to normalize the impulse response and provision for modifying the latter to compensate for energy pulse attenuation in the material to render it more accurate by satisfying the known boundary conditions of said layered material.
Abstract:
Method and apparatus are provided for processing the successive echo pulses which result from the interrogation of a layered material by energy pulses, and include the direct provision from said echo pulses of the uncompensated coherent echo response of said material to thereby preserve phase information, the provision of the compensated impulse response of said material by modification of said echo response with a non-linear correction function, and the calculation of the RAYLOGRAM of said material from said impulse response. All of the above is accomplished in the complete absence of deconvolution, and said non-linear correction function includes a normalization factor to normalize the impulse response and provision for modifying the latter to compensate for energy pulse attenuation in the material to render it more accurate by satisfying the known boundary conditions of said layered material.
Abstract:
New and improved methodology and apparatus for non-invasive biophysical diagnosis are disclosed and comprise the ensonification of body parts with multi-frequency energy pulses in predetermined timed sequence, the detection of the resultant echo pulses, the processing of the latter to provide signals indicative of the impedance of the body part, the referencing of said signals to the biophysical cycle of the body part, and the real time display of said signals in the form of an impedance profile of said body part.