Abstract:
A sequential color system is provided in which a processor (22) is coupled to a memory (24) and a receiver (27). Images are generated by shining light from a light source (28) through a color wheel (30) and onto DMD array (26). Light from the DMD array (26) is shone on screen (32). By adjusting the speed and make-up of color wheel (30) color separation is greatly reduced or eliminated. Also disclosed are techniques for sequential imaging which may be applied to other technologies, such as CRT technologies.
Abstract:
A system (30) for packing data into a video processor is provided. System (30) comprises demultiplexer (32), first and second first in-first out buffer memories (34) and (36), and multiplexer (38). Demultiplexer (32) divides a field of video data into first and second parts (42) and (44). First and second parts (42) and (44) are stored in first first in-first out buffer memories (34) and (36), respectively. Multiplexer (38) combines one line from first first in-first out buffer memory (34) with one line from second first in-first out buffer memory (36) to form a single line for processing.
Abstract:
A system (30) for packing data into a video processor is provided. System (30) comprises demultiplexer (32), first and second first in-first out buffer memories (34) and (36), and multiplexer (38). Demultiplexer (32) divides a field of video data into first and second parts (42) and (44). First and second parts (42) and (44) are stored in first first in-first out buffer memories (34) and (36), respectively. Multiplexer (38) combines one line from first first in-first out buffer memory (34) with one line from second first in-first out buffer memory (36) to form a single line for processing.
Abstract:
A method for controlling a digital micromirror device 40 resulting in decreased mechanical stress, longer device lifetimes, decreased incidence of spontaneous bit reset, and increased pulse-width modulation accuracy. To reduce the device stress, the bias voltage 142 applied to the mirror 50 may be reduced after the mirror 50 has been latched. To prevent premature mirror changes, the address electrode bias voltage 140 may be reduced after the mirror is driven to the desired position. To ensure that the mirror 50 returns to the neutral position during reset, the mirror bias voltage 142 may be raised from ground potential to approximately hallway between the two addressing voltages during the reset period 152 . To reduce the effects of hinge memory and to ensure that the mirror 50 rotates toward the proper address electrode, the mirror bias voltage 142 may be gradually increased to allow the mirror 50 time to rotate towards the proper address electrode.