IC with deep trench polysilicon oxidation

    公开(公告)号:US11756794B2

    公开(公告)日:2023-09-12

    申请号:US17004932

    申请日:2020-08-27

    Abstract: A method of fabricating an IC includes forming a layer stack thereon including silicon nitride layer on a first silicon oxide layer, with a second silicon oxide layer thereon on a substrate including a semiconductor material. The layer stack is etched to form ≥1 trench that is at least 2 microns deep into the semiconductor material. A dielectric liner is formed on sidewalls and a bottom of the trench. A polysilicon layer is formed on the dielectric liner that fills the trench and extends lateral to the trench. Chemical mechanical planarization (CMP) processing stops on the silicon nitride layer to remove the polysilicon layer and the second silicon oxide layer to form a trench structure having a polysilicon fill. After the CMP processing, thermal oxidation oxidizes exposed regions of the polysilicon layer to form a polysilicon oxide layer. After the thermal oxidizing, the silicon nitride layer is removed.

    HIGH RELIABILITY POLYSILICON COMPONENTS
    7.
    发明申请

    公开(公告)号:US20200075583A1

    公开(公告)日:2020-03-05

    申请号:US16118648

    申请日:2018-08-31

    Abstract: The present disclosure introduces, among other things, an electronic device, e.g. an integrated circuit (IC). The IC includes a semiconductor substrate comprising a first doped layer of a first conductivity type. A second doped layer of the first conductivity type is located within the first doped layer. The second doped layer has first and second layer portions with a greater dopant concentration than the first doped layer, with the first layer portion being spaced apart from the second layer portion laterally with respect to a surface of the substrate. The IC further includes a lightly doped portion of the first doped layer, the lightly doped portion being located between the first and second layer portions. A dielectric isolation structure is located between the first and second layer portions, and directly contacts the lightly doped portion.

Patent Agency Ranking